| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > con4d | GIF version | ||
| Description: Deduction derived from Axiom ax-3 8. (Contributed by NM, 26-Mar-1995.) | 
| Ref | Expression | 
|---|---|
| con4d.1 | ⊢ (φ → (¬ ψ → ¬ χ)) | 
| Ref | Expression | 
|---|---|
| con4d | ⊢ (φ → (χ → ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | con4d.1 | . 2 ⊢ (φ → (¬ ψ → ¬ χ)) | |
| 2 | ax-3 8 | . 2 ⊢ ((¬ ψ → ¬ χ) → (χ → ψ)) | |
| 3 | 1, 2 | syl 15 | 1 ⊢ (φ → (χ → ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem is referenced by: pm2.21d 98 pm2.18 102 con2d 107 con1d 116 mt4d 130 impcon4bid 196 con4bid 284 exim 1575 sp 1747 spOLD 1748 axi11e 2332 necon2ad 2565 spc2gv 2943 spc3gv 2945 addceq0 6220 | 
| Copyright terms: Public domain | W3C validator |