| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > mth8 | GIF version | ||
| Description: Theorem 8 of [Margaris] p. 60. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) | 
| Ref | Expression | 
|---|---|
| mth8 | ⊢ (φ → (¬ ψ → ¬ (φ → ψ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.27 35 | . 2 ⊢ (φ → ((φ → ψ) → ψ)) | |
| 2 | 1 | con3d 125 | 1 ⊢ (φ → (¬ ψ → ¬ (φ → ψ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |