New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > con3d | GIF version |
Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
con3d.1 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
con3d | ⊢ (φ → (¬ χ → ¬ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot2 104 | . . 3 ⊢ (¬ ¬ ψ → ψ) | |
2 | con3d.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
3 | 1, 2 | syl5 28 | . 2 ⊢ (φ → (¬ ¬ ψ → χ)) |
4 | 3 | con1d 116 | 1 ⊢ (φ → (¬ χ → ¬ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con3 126 con3rr3 128 nsyld 132 nsyli 133 mth8 138 pm2.52 147 pm5.21ndd 343 bija 344 con3and 428 ax12bOLD 1690 ax12olem1 1927 spime 1976 mo 2226 necon1bd 2585 rexim 2719 spcimegf 2934 spcimedv 2939 rspcimedv 2958 ssneld 3276 sscon 3401 difrab 3530 ssofss 4077 pwadjoin 4120 nnsucelrlem2 4426 nnadjoin 4521 sfinltfin 4536 vfinspsslem1 4551 phi11lem1 4596 phialllem1 4617 eqfnfv 5393 dff3 5421 ndmovg 5614 nchoicelem3 6292 |
Copyright terms: Public domain | W3C validator |