NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon2bbid GIF version

Theorem necon2bbid 2575
Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.)
Hypothesis
Ref Expression
necon2bbid.1 (φ → (ψAB))
Assertion
Ref Expression
necon2bbid (φ → (A = B ↔ ¬ ψ))

Proof of Theorem necon2bbid
StepHypRef Expression
1 necon2bbid.1 . . 3 (φ → (ψAB))
2 df-ne 2519 . . 3 (AB ↔ ¬ A = B)
31, 2syl6bb 252 . 2 (φ → (ψ ↔ ¬ A = B))
43con2bid 319 1 (φ → (A = B ↔ ¬ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  necon4bid  2583
  Copyright terms: Public domain W3C validator