NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon4bid GIF version

Theorem necon4bid 2583
Description: Contrapositive law deduction for inequality. (Contributed by NM, 29-Jun-2007.)
Hypothesis
Ref Expression
necon4bid.1 (φ → (ABCD))
Assertion
Ref Expression
necon4bid (φ → (A = BC = D))

Proof of Theorem necon4bid
StepHypRef Expression
1 necon4bid.1 . . 3 (φ → (ABCD))
21necon2bbid 2575 . 2 (φ → (C = D ↔ ¬ AB))
3 nne 2521 . 2 ABA = B)
42, 3syl6rbb 253 1 (φ → (A = BC = D))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  nebi  2588
  Copyright terms: Public domain W3C validator