HomeHome New Foundations Explorer
Theorem List (p. 26 of 64)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  NFE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for New Foundations Explorer - 2501-2600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnfeq2 2501* Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
xB       x A = B
 
Theoremnfel2 2502* Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
xB       x A B
 
Theoremnfcrd 2503* Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
(φxA)       (φ → Ⅎx y A)
 
Theoremnfeqd 2504 Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
(φxA)    &   (φxB)       (φ → Ⅎx A = B)
 
Theoremnfeld 2505 Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
(φxA)    &   (φxB)       (φ → Ⅎx A B)
 
Theoremdrnfc1 2506 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
(x x = yA = B)       (x x = y → (xAyB))
 
Theoremdrnfc2 2507 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
(x x = yA = B)       (x x = y → (zAzB))
 
Theoremnfabd2 2508 Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.)
yφ    &   ((φ ¬ x x = y) → Ⅎxψ)       (φx{y ψ})
 
Theoremnfabd 2509 Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.)
yφ    &   (φ → Ⅎxψ)       (φx{y ψ})
 
Theoremdvelimdc 2510 Deduction form of dvelimc 2511. (Contributed by Mario Carneiro, 8-Oct-2016.)
xφ    &   zφ    &   (φxA)    &   (φzB)    &   (φ → (z = yA = B))       (φ → (¬ x x = yxB))
 
Theoremdvelimc 2511 Version of dvelim 2016 for classes. (Contributed by Mario Carneiro, 8-Oct-2016.)
xA    &   zB    &   (z = yA = B)       x x = yxB)
 
Theoremnfcvf 2512 If x and y are distinct, then x is not free in y. (Contributed by Mario Carneiro, 8-Oct-2016.)
x x = yxy)
 
Theoremnfcvf2 2513 If x and y are distinct, then y is not free in x. (Contributed by Mario Carneiro, 5-Dec-2016.)
x x = yyx)
 
Theoremcleqf 2514 Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
xA    &   xB       (A = Bx(x Ax B))
 
Theoremabid2f 2515 A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
xA       {x x A} = A
 
Theoremsbabel 2516* Theorem to move a substitution in and out of a class abstraction. (Contributed by NM, 27-Sep-2003.) (Revised by Mario Carneiro, 7-Oct-2016.)
xA       ([y / x]{z φ} A ↔ {z [y / x]φ} A)
 
2.1.4  Negated equality and membership
 
Syntaxwne 2517 Extend wff notation to include inequality.
wff AB
 
Syntaxwnel 2518 Extend wff notation to include negated membership.
wff A B
 
Definitiondf-ne 2519 Define inequality. (Contributed by NM, 5-Aug-1993.)
(AB ↔ ¬ A = B)
 
Definitiondf-nel 2520 Define negated membership. (Contributed by NM, 7-Aug-1994.)
(A B ↔ ¬ A B)
 
Theoremnne 2521 Negation of inequality. (Contributed by NM, 9-Jun-2006.)
ABA = B)
 
Theoremneirr 2522 No class is unequal to itself. (Contributed by Stefan O'Rear, 1-Jan-2015.)
¬ AA
 
Theoremexmidne 2523 Excluded middle with equality and inequality. (Contributed by NM, 3-Feb-2012.)
(A = B AB)
 
Theoremnonconne 2524 Law of noncontradiction with equality and inequality. (Contributed by NM, 3-Feb-2012.)
¬ (A = B AB)
 
Theoremneeq1 2525 Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.)
(A = B → (ACBC))
 
Theoremneeq2 2526 Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.)
(A = B → (CACB))
 
Theoremneeq1i 2527 Inference for inequality. (Contributed by NM, 29-Apr-2005.)
A = B       (ACBC)
 
Theoremneeq2i 2528 Inference for inequality. (Contributed by NM, 29-Apr-2005.)
A = B       (CACB)
 
Theoremneeq12i 2529 Inference for inequality. (Contributed by NM, 24-Jul-2012.)
A = B    &   C = D       (ACBD)
 
Theoremneeq1d 2530 Deduction for inequality. (Contributed by NM, 25-Oct-1999.)
(φA = B)       (φ → (ACBC))
 
Theoremneeq2d 2531 Deduction for inequality. (Contributed by NM, 25-Oct-1999.)
(φA = B)       (φ → (CACB))
 
Theoremneeq12d 2532 Deduction for inequality. (Contributed by NM, 24-Jul-2012.)
(φA = B)    &   (φC = D)       (φ → (ACBD))
 
Theoremneneqd 2533 Deduction eliminating inequality definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(φAB)       (φ → ¬ A = B)
 
Theoremeqnetri 2534 Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
A = B    &   BC       AC
 
Theoremeqnetrd 2535 Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
(φA = B)    &   (φBC)       (φAC)
 
Theoremeqnetrri 2536 Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
A = B    &   AC       BC
 
Theoremeqnetrrd 2537 Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
(φA = B)    &   (φAC)       (φBC)
 
Theoremneeqtri 2538 Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
AB    &   B = C       AC
 
Theoremneeqtrd 2539 Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
(φAB)    &   (φB = C)       (φAC)
 
Theoremneeqtrri 2540 Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
AB    &   C = B       AC
 
Theoremneeqtrrd 2541 Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
(φAB)    &   (φC = B)       (φAC)
 
Theoremsyl5eqner 2542 B chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.)
B = A    &   (φBC)       (φAC)
 
Theorem3netr3d 2543 Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.)
(φAB)    &   (φA = C)    &   (φB = D)       (φCD)
 
Theorem3netr4d 2544 Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.)
(φAB)    &   (φC = A)    &   (φD = B)       (φCD)
 
Theorem3netr3g 2545 Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.)
(φAB)    &   A = C    &   B = D       (φCD)
 
Theorem3netr4g 2546 Substitution of equality into both sides of an inequality. (Contributed by NM, 14-Jun-2012.)
(φAB)    &   C = A    &   D = B       (φCD)
 
Theoremnecon3abii 2547 Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.)
(A = Bφ)       (AB ↔ ¬ φ)
 
Theoremnecon3bbii 2548 Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.)
(φA = B)       φAB)
 
Theoremnecon3bii 2549 Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.)
(A = BC = D)       (ABCD)
 
Theoremnecon3abid 2550 Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.)
(φ → (A = Bψ))       (φ → (AB ↔ ¬ ψ))
 
Theoremnecon3bbid 2551 Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.)
(φ → (ψA = B))       (φ → (¬ ψAB))
 
Theoremnecon3bid 2552 Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(φ → (A = BC = D))       (φ → (ABCD))
 
Theoremnecon3ad 2553 Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(φ → (ψA = B))       (φ → (AB → ¬ ψ))
 
Theoremnecon3bd 2554 Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(φ → (A = Bψ))       (φ → (¬ ψAB))
 
Theoremnecon3d 2555 Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.)
(φ → (A = BC = D))       (φ → (CDAB))
 
Theoremnecon3i 2556 Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.)
(A = BC = D)       (CDAB)
 
Theoremnecon3ai 2557 Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(φA = B)       (AB → ¬ φ)
 
Theoremnecon3bi 2558 Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(A = Bφ)       φAB)
 
Theoremnecon1ai 2559 Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.)
φA = B)       (ABφ)
 
Theoremnecon1bi 2560 Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(ABφ)       φA = B)
 
Theoremnecon1i 2561 Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.)
(ABC = D)       (CDA = B)
 
Theoremnecon2ai 2562 Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(A = B → ¬ φ)       (φAB)
 
Theoremnecon2bi 2563 Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.)
(φAB)       (A = B → ¬ φ)
 
Theoremnecon2i 2564 Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.)
(A = BCD)       (C = DAB)
 
Theoremnecon2ad 2565 Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(φ → (A = B → ¬ ψ))       (φ → (ψAB))
 
Theoremnecon2bd 2566 Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.)
(φ → (ψAB))       (φ → (A = B → ¬ ψ))
 
Theoremnecon2d 2567 Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.)
(φ → (A = BCD))       (φ → (C = DAB))
 
Theoremnecon1abii 2568 Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.)
φA = B)       (ABφ)
 
Theoremnecon1bbii 2569 Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.)
(ABφ)       φA = B)
 
Theoremnecon1abid 2570 Contrapositive deduction for inequality. (Contributed by NM, 21-Aug-2007.)
(φ → (¬ ψA = B))       (φ → (ABψ))
 
Theoremnecon1bbid 2571 Contrapositive inference for inequality. (Contributed by NM, 31-Jan-2008.)
(φ → (ABψ))       (φ → (¬ ψA = B))
 
Theoremnecon2abii 2572 Contrapositive inference for inequality. (Contributed by NM, 2-Mar-2007.)
(A = B ↔ ¬ φ)       (φAB)
 
Theoremnecon2bbii 2573 Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.)
(φAB)       (A = B ↔ ¬ φ)
 
Theoremnecon2abid 2574 Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007.)
(φ → (A = B ↔ ¬ ψ))       (φ → (ψAB))
 
Theoremnecon2bbid 2575 Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.)
(φ → (ψAB))       (φ → (A = B ↔ ¬ ψ))
 
Theoremnecon4ai 2576 Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(AB → ¬ φ)       (φA = B)
 
Theoremnecon4i 2577 Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(ABCD)       (C = DA = B)
 
Theoremnecon4ad 2578 Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(φ → (AB → ¬ ψ))       (φ → (ψA = B))
 
Theoremnecon4bd 2579 Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(φ → (¬ ψAB))       (φ → (A = Bψ))
 
Theoremnecon4d 2580 Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(φ → (ABCD))       (φ → (C = DA = B))
 
Theoremnecon4abid 2581 Contrapositive law deduction for inequality. (Contributed by NM, 11-Jan-2008.)
(φ → (AB ↔ ¬ ψ))       (φ → (A = Bψ))
 
Theoremnecon4bbid 2582 Contrapositive law deduction for inequality. (Contributed by NM, 9-May-2012.)
(φ → (¬ ψAB))       (φ → (ψA = B))
 
Theoremnecon4bid 2583 Contrapositive law deduction for inequality. (Contributed by NM, 29-Jun-2007.)
(φ → (ABCD))       (φ → (A = BC = D))
 
Theoremnecon1ad 2584 Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.)
(φ → (¬ ψA = B))       (φ → (ABψ))
 
Theoremnecon1bd 2585 Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(φ → (ABψ))       (φ → (¬ ψA = B))
 
Theoremnecon1d 2586 Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(φ → (ABC = D))       (φ → (CDA = B))
 
Theoremneneqad 2587 If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2533. One-way deduction form of df-ne 2519. (Contributed by David Moews, 28-Feb-2017.)
(φ → ¬ A = B)       (φAB)
 
Theoremnebi 2588 Contraposition law for inequality. (Contributed by NM, 28-Dec-2008.)
((A = BC = D) ↔ (ABCD))
 
Theorempm13.18 2589 Theorem *13.18 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
((A = B AC) → BC)
 
Theorempm13.181 2590 Theorem *13.181 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
((A = B BC) → AC)
 
Theorempm2.21ddne 2591 A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.)
(φA = B)    &   (φAB)       (φψ)
 
Theorempm2.61ne 2592 Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(A = B → (ψχ))    &   ((φ AB) → ψ)    &   (φχ)       (φψ)
 
Theorempm2.61ine 2593 Inference eliminating an inequality in an antecedent. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(A = Bφ)    &   (ABφ)       φ
 
Theorempm2.61dne 2594 Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(φ → (A = Bψ))    &   (φ → (ABψ))       (φψ)
 
Theorempm2.61dane 2595 Deduction eliminating an inequality in an antecedent. (Contributed by NM, 30-Nov-2011.)
((φ A = B) → ψ)    &   ((φ AB) → ψ)       (φψ)
 
Theorempm2.61da2ne 2596 Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.)
((φ A = B) → ψ)    &   ((φ C = D) → ψ)    &   ((φ (AB CD)) → ψ)       (φψ)
 
Theorempm2.61da3ne 2597 Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013.)
((φ A = B) → ψ)    &   ((φ C = D) → ψ)    &   ((φ E = F) → ψ)    &   ((φ (AB CD EF)) → ψ)       (φψ)
 
Theoremnecom 2598 Commutation of inequality. (Contributed by NM, 14-May-1999.)
(ABBA)
 
Theoremnecomi 2599 Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.)
AB       BA
 
Theoremnecomd 2600 Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.)
(φAB)       (φBA)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6339
  Copyright terms: Public domain < Previous  Next >