New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nic-idlem1 | GIF version |
Description: Lemma for nic-id 1443. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-idlem1 | ⊢ ((θ ⊼ (τ ⊼ (τ ⊼ τ))) ⊼ (((φ ⊼ (χ ⊼ ψ)) ⊼ θ) ⊼ ((φ ⊼ (χ ⊼ ψ)) ⊼ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-ax 1438 | . 2 ⊢ ((φ ⊼ (χ ⊼ ψ)) ⊼ ((τ ⊼ (τ ⊼ τ)) ⊼ ((φ ⊼ χ) ⊼ ((φ ⊼ φ) ⊼ (φ ⊼ φ))))) | |
2 | 1 | nic-imp 1440 | 1 ⊢ ((θ ⊼ (τ ⊼ (τ ⊼ τ))) ⊼ (((φ ⊼ (χ ⊼ ψ)) ⊼ θ) ⊼ ((φ ⊼ (χ ⊼ ψ)) ⊼ θ))) |
Colors of variables: wff setvar class |
Syntax hints: ⊼ wnan 1287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
This theorem is referenced by: nic-id 1443 |
Copyright terms: Public domain | W3C validator |