NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nic-idlem1 GIF version

Theorem nic-idlem1 1441
Description: Lemma for nic-id 1443. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nic-idlem1 ((θ (τ (τ τ))) (((φ (χ ψ)) θ) ((φ (χ ψ)) θ)))

Proof of Theorem nic-idlem1
StepHypRef Expression
1 nic-ax 1438 . 2 ((φ (χ ψ)) ((τ (τ τ)) ((φ χ) ((φ φ) (φ φ)))))
21nic-imp 1440 1 ((θ (τ (τ τ))) (((φ (χ ψ)) θ) ((φ (χ ψ)) θ)))
Colors of variables: wff setvar class
Syntax hints:   wnan 1287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288
This theorem is referenced by:  nic-id  1443
  Copyright terms: Public domain W3C validator