New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nic-id | GIF version |
Description: Theorem id 19 expressed with ⊼. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-id | ⊢ (τ ⊼ (τ ⊼ τ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-ax 1438 | . . 3 ⊢ ((ψ ⊼ (ψ ⊼ ψ)) ⊼ ((θ ⊼ (θ ⊼ θ)) ⊼ ((φ ⊼ ψ) ⊼ ((ψ ⊼ φ) ⊼ (ψ ⊼ φ))))) | |
2 | 1 | nic-idlem2 1442 | . 2 ⊢ ((((φ ⊼ ψ) ⊼ ((ψ ⊼ φ) ⊼ (ψ ⊼ φ))) ⊼ (χ ⊼ (χ ⊼ χ))) ⊼ (ψ ⊼ (ψ ⊼ ψ))) |
3 | nic-idlem1 1441 | . . 3 ⊢ (((χ ⊼ (χ ⊼ χ)) ⊼ (τ ⊼ (τ ⊼ τ))) ⊼ ((((φ ⊼ ψ) ⊼ ((ψ ⊼ φ) ⊼ (ψ ⊼ φ))) ⊼ (χ ⊼ (χ ⊼ χ))) ⊼ (((φ ⊼ ψ) ⊼ ((ψ ⊼ φ) ⊼ (ψ ⊼ φ))) ⊼ (χ ⊼ (χ ⊼ χ))))) | |
4 | 3 | nic-idlem2 1442 | . 2 ⊢ (((((φ ⊼ ψ) ⊼ ((ψ ⊼ φ) ⊼ (ψ ⊼ φ))) ⊼ (χ ⊼ (χ ⊼ χ))) ⊼ (ψ ⊼ (ψ ⊼ ψ))) ⊼ ((χ ⊼ (χ ⊼ χ)) ⊼ (τ ⊼ (τ ⊼ τ)))) |
5 | 2, 4 | nic-mp 1436 | 1 ⊢ (τ ⊼ (τ ⊼ τ)) |
Colors of variables: wff setvar class |
Syntax hints: ⊼ wnan 1287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
This theorem is referenced by: nic-swap 1444 nic-idel 1449 nic-bi1 1453 nic-bi2 1454 nic-luk2 1457 nic-luk3 1458 |
Copyright terms: Public domain | W3C validator |