New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  nic-id GIF version

Theorem nic-id 1443
 Description: Theorem id 19 expressed with ⊼. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nic-id (τ (τ τ))

Proof of Theorem nic-id
StepHypRef Expression
1 nic-ax 1438 . . 3 ((ψ (ψ ψ)) ((θ (θ θ)) ((φ ψ) ((ψ φ) (ψ φ)))))
21nic-idlem2 1442 . 2 ((((φ ψ) ((ψ φ) (ψ φ))) (χ (χ χ))) (ψ (ψ ψ)))
3 nic-idlem1 1441 . . 3 (((χ (χ χ)) (τ (τ τ))) ((((φ ψ) ((ψ φ) (ψ φ))) (χ (χ χ))) (((φ ψ) ((ψ φ) (ψ φ))) (χ (χ χ)))))
43nic-idlem2 1442 . 2 (((((φ ψ) ((ψ φ) (ψ φ))) (χ (χ χ))) (ψ (ψ ψ))) ((χ (χ χ)) (τ (τ τ))))
52, 4nic-mp 1436 1 (τ (τ τ))
 Colors of variables: wff setvar class Syntax hints:   ⊼ wnan 1287 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288 This theorem is referenced by:  nic-swap  1444  nic-idel  1449  nic-bi1  1453  nic-bi2  1454  nic-luk2  1457  nic-luk3  1458
 Copyright terms: Public domain W3C validator