| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm1.4 | GIF version | ||
| Description: Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm1.4 | ⊢ ((φ ∨ ψ) → (ψ ∨ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 373 | . 2 ⊢ (φ → (ψ ∨ φ)) | |
| 2 | orc 374 | . 2 ⊢ (ψ → (ψ ∨ φ)) | |
| 3 | 1, 2 | jaoi 368 | 1 ⊢ ((φ ∨ ψ) → (ψ ∨ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 |
| This theorem is referenced by: orcom 376 orcoms 378 pm2.3 555 pm2.36 816 pm2.37 817 rb-ax2 1518 |
| Copyright terms: Public domain | W3C validator |