![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > jaoi | GIF version |
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 5-Apr-1994.) |
Ref | Expression |
---|---|
jaoi.1 | ⊢ (φ → ψ) |
jaoi.2 | ⊢ (χ → ψ) |
Ref | Expression |
---|---|
jaoi | ⊢ ((φ ∨ χ) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 362 | . . 3 ⊢ ((φ ∨ χ) → (¬ φ → χ)) | |
2 | jaoi.2 | . . 3 ⊢ (χ → ψ) | |
3 | 1, 2 | syl6 29 | . 2 ⊢ ((φ ∨ χ) → (¬ φ → ψ)) |
4 | jaoi.1 | . 2 ⊢ (φ → ψ) | |
5 | 3, 4 | pm2.61d2 152 | 1 ⊢ ((φ ∨ χ) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: jaod 369 pm1.4 375 jaoa 496 pm1.2 499 orim12i 502 pm1.5 508 pm2.41 556 pm2.42 557 pm2.4 558 pm4.44 560 jaoian 759 pm2.64 764 pm2.82 825 pm3.2ni 827 andi 837 ecase3 907 consensus 925 cad1 1398 19.33 1607 19.33b 1608 dfsb2 2055 mooran1 2258 2eu3 2286 eueq3 3011 sbcor 3090 elun 3220 sspss 3368 sspsstr 3374 ssun 3442 inss 3484 undif3 3515 ifbi 3679 elpr2 3752 pwpw0 3855 sssn 3864 snsssn 3873 pwsnALT 3882 unissint 3950 pwadjoin 4119 preq12b 4127 abexv 4324 nnc0suc 4412 lefinlteq 4463 ltfintri 4466 clos1basesuc 5882 nchoicelem17 6305 |
Copyright terms: Public domain | W3C validator |