New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > jaoi | GIF version |
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 5-Apr-1994.) |
Ref | Expression |
---|---|
jaoi.1 | ⊢ (φ → ψ) |
jaoi.2 | ⊢ (χ → ψ) |
Ref | Expression |
---|---|
jaoi | ⊢ ((φ ∨ χ) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 362 | . . 3 ⊢ ((φ ∨ χ) → (¬ φ → χ)) | |
2 | jaoi.2 | . . 3 ⊢ (χ → ψ) | |
3 | 1, 2 | syl6 29 | . 2 ⊢ ((φ ∨ χ) → (¬ φ → ψ)) |
4 | jaoi.1 | . 2 ⊢ (φ → ψ) | |
5 | 3, 4 | pm2.61d2 152 | 1 ⊢ ((φ ∨ χ) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: jaod 369 pm1.4 375 jaoa 496 pm1.2 499 orim12i 502 pm1.5 508 pm2.41 556 pm2.42 557 pm2.4 558 pm4.44 560 jaoian 759 pm2.64 764 pm2.82 825 pm3.2ni 827 andi 837 ecase3 907 consensus 925 cad1 1398 19.33 1607 19.33b 1608 dfsb2 2055 mooran1 2258 2eu3 2286 eueq3 3012 sbcor 3091 elun 3221 sspss 3369 sspsstr 3375 ssun 3443 inss 3485 undif3 3516 ifbi 3680 elpr2 3753 pwpw0 3856 sssn 3865 snsssn 3874 pwsnALT 3883 unissint 3951 pwadjoin 4120 preq12b 4128 abexv 4325 nnc0suc 4413 lefinlteq 4464 ltfintri 4467 clos1basesuc 5883 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |