New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm2.3 | GIF version |
Description: Theorem *2.3 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.3 | ⊢ ((φ ∨ (ψ ∨ χ)) → (φ ∨ (χ ∨ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.4 375 | . 2 ⊢ ((ψ ∨ χ) → (χ ∨ ψ)) | |
2 | 1 | orim2i 504 | 1 ⊢ ((φ ∨ (ψ ∨ χ)) → (φ ∨ (χ ∨ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |