NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.42 GIF version

Theorem pm2.42 557
Description: Theorem *2.42 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.42 ((¬ φ (φψ)) → (φψ))

Proof of Theorem pm2.42
StepHypRef Expression
1 pm2.21 100 . 2 φ → (φψ))
2 id 19 . 2 ((φψ) → (φψ))
31, 2jaoi 368 1 ((¬ φ (φψ)) → (φψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator