HomeHome New Foundations Explorer
Theorem List (p. 6 of 64)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  NFE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for New Foundations Explorer - 501-600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempm4.25 501 Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.)
(φ ↔ (φ φ))
 
Theoremorim12i 502 Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.)
(φψ)    &   (χθ)       ((φ χ) → (ψ θ))
 
Theoremorim1i 503 Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
(φψ)       ((φ χ) → (ψ χ))
 
Theoremorim2i 504 Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
(φψ)       ((χ φ) → (χ ψ))
 
Theoremorbi2i 505 Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.)
(φψ)       ((χ φ) ↔ (χ ψ))
 
Theoremorbi1i 506 Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
(φψ)       ((φ χ) ↔ (ψ χ))
 
Theoremorbi12i 507 Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.)
(φψ)    &   (χθ)       ((φ χ) ↔ (ψ θ))
 
Theorempm1.5 508 Axiom *1.5 (Assoc) of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.)
((φ (ψ χ)) → (ψ (φ χ)))
 
Theoremor12 509 Swap two disjuncts. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2012.)
((φ (ψ χ)) ↔ (ψ (φ χ)))
 
Theoremorass 510 Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(((φ ψ) χ) ↔ (φ (ψ χ)))
 
Theorempm2.31 511 Theorem *2.31 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
((φ (ψ χ)) → ((φ ψ) χ))
 
Theorempm2.32 512 Theorem *2.32 of [WhiteheadRussell] p. 105. (Contributed by NM, 3-Jan-2005.)
(((φ ψ) χ) → (φ (ψ χ)))
 
Theoremor32 513 A rearrangement of disjuncts. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(((φ ψ) χ) ↔ ((φ χ) ψ))
 
Theoremor4 514 Rearrangement of 4 disjuncts. (Contributed by NM, 12-Aug-1994.)
(((φ ψ) (χ θ)) ↔ ((φ χ) (ψ θ)))
 
Theoremor42 515 Rearrangement of 4 disjuncts. (Contributed by NM, 10-Jan-2005.)
(((φ ψ) (χ θ)) ↔ ((φ χ) (θ ψ)))
 
Theoremorordi 516 Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.)
((φ (ψ χ)) ↔ ((φ ψ) (φ χ)))
 
Theoremorordir 517 Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.)
(((φ ψ) χ) ↔ ((φ χ) (ψ χ)))
 
Theoremjca 518 Deduce conjunction of the consequents of two implications ("join consequents with 'and'"). Equivalent to the natural deduction rule I ( introduction), see natded in set.mm. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.)
(φψ)    &   (φχ)       (φ → (ψ χ))
 
Theoremjcad 519 Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.)
(φ → (ψχ))    &   (φ → (ψθ))       (φ → (ψ → (χ θ)))
 
Theoremjca31 520 Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.)
(φψ)    &   (φχ)    &   (φθ)       (φ → ((ψ χ) θ))
 
Theoremjca32 521 Join three consequents. (Contributed by FL, 1-Aug-2009.)
(φψ)    &   (φχ)    &   (φθ)       (φ → (ψ (χ θ)))
 
Theoremjcai 522 Deduction replacing implication with conjunction. (Contributed by NM, 5-Aug-1993.)
(φψ)    &   (φ → (ψχ))       (φ → (ψ χ))
 
Theoremjctil 523 Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
(φψ)    &   χ       (φ → (χ ψ))
 
Theoremjctir 524 Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
(φψ)    &   χ       (φ → (ψ χ))
 
Theoremjctl 525 Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.)
ψ       (φ → (ψ φ))
 
Theoremjctr 526 Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.)
ψ       (φ → (φ ψ))
 
Theoremjctild 527 Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.)
(φ → (ψχ))    &   (φθ)       (φ → (ψ → (θ χ)))
 
Theoremjctird 528 Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.)
(φ → (ψχ))    &   (φθ)       (φ → (ψ → (χ θ)))
 
Theoremancl 529 Conjoin antecedent to left of consequent. (Contributed by NM, 15-Aug-1994.)
((φψ) → (φ → (φ ψ)))
 
Theoremanclb 530 Conjoin antecedent to left of consequent. Theorem *4.7 of [WhiteheadRussell] p. 120. (Contributed by NM, 25-Jul-1999.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
((φψ) ↔ (φ → (φ ψ)))
 
Theorempm5.42 531 Theorem *5.42 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
((φ → (ψχ)) ↔ (φ → (ψ → (φ χ))))
 
Theoremancr 532 Conjoin antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.)
((φψ) → (φ → (ψ φ)))
 
Theoremancrb 533 Conjoin antecedent to right of consequent. (Contributed by NM, 25-Jul-1999.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
((φψ) ↔ (φ → (ψ φ)))
 
Theoremancli 534 Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.)
(φψ)       (φ → (φ ψ))
 
Theoremancri 535 Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.)
(φψ)       (φ → (ψ φ))
 
Theoremancld 536 Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
(φ → (ψχ))       (φ → (ψ → (ψ χ)))
 
Theoremancrd 537 Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
(φ → (ψχ))       (φ → (ψ → (χ ψ)))
 
Theoremanc2l 538 Conjoin antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 14-Jul-2013.)
((φ → (ψχ)) → (φ → (ψ → (φ χ))))
 
Theoremanc2r 539 Conjoin antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.)
((φ → (ψχ)) → (φ → (ψ → (χ φ))))
 
Theoremanc2li 540 Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
(φ → (ψχ))       (φ → (ψ → (φ χ)))
 
Theoremanc2ri 541 Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
(φ → (ψχ))       (φ → (ψ → (χ φ)))
 
Theorempm3.41 542 Theorem *3.41 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
((φχ) → ((φ ψ) → χ))
 
Theorempm3.42 543 Theorem *3.42 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
((ψχ) → ((φ ψ) → χ))
 
Theorempm3.4 544 Conjunction implies implication. Theorem *3.4 of [WhiteheadRussell] p. 113. (Contributed by NM, 31-Jul-1995.)
((φ ψ) → (φψ))
 
Theorempm4.45im 545 Conjunction with implication. Compare Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 17-May-1998.)
(φ ↔ (φ (ψφ)))
 
Theoremanim12d 546 Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.)
(φ → (ψχ))    &   (φ → (θτ))       (φ → ((ψ θ) → (χ τ)))
 
Theoremanim1d 547 Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.)
(φ → (ψχ))       (φ → ((ψ θ) → (χ θ)))
 
Theoremanim2d 548 Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.)
(φ → (ψχ))       (φ → ((θ ψ) → (θ χ)))
 
Theoremanim12i 549 Conjoin antecedents and consequents of two premises. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Dec-2013.)
(φψ)    &   (χθ)       ((φ χ) → (ψ θ))
 
Theoremanim12ci 550 Variant of anim12i 549 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(φψ)    &   (χθ)       ((φ χ) → (θ ψ))
 
Theoremanim1i 551 Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.)
(φψ)       ((φ χ) → (ψ χ))
 
Theoremanim2i 552 Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.)
(φψ)       ((χ φ) → (χ ψ))
 
Theoremanim12ii 553 Conjoin antecedents and consequents in a deduction. (Contributed by NM, 11-Nov-2007.) (Proof shortened by Wolf Lammen, 19-Jul-2013.)
(φ → (ψχ))    &   (θ → (ψτ))       ((φ θ) → (ψ → (χ τ)))
 
Theoremprth 554 Conjoin antecedents and consequents of two premises. This is the closed theorem form of anim12d 546. Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it praeclarum theorema (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
(((φψ) (χθ)) → ((φ χ) → (ψ θ)))
 
Theorempm2.3 555 Theorem *2.3 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
((φ (ψ χ)) → (φ (χ ψ)))
 
Theorempm2.41 556 Theorem *2.41 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
((ψ (φ ψ)) → (φ ψ))
 
Theorempm2.42 557 Theorem *2.42 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
((¬ φ (φψ)) → (φψ))
 
Theorempm2.4 558 Theorem *2.4 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
((φ (φ ψ)) → (φ ψ))
 
Theorempm2.65da 559 Deduction rule for proof by contradiction. (Contributed by NM, 12-Jun-2014.)
((φ ψ) → χ)    &   ((φ ψ) → ¬ χ)       (φ → ¬ ψ)
 
Theorempm4.44 560 Theorem *4.44 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.)
(φ ↔ (φ (φ ψ)))
 
Theorempm4.14 561 Theorem *4.14 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Oct-2012.)
(((φ ψ) → χ) ↔ ((φ ¬ χ) → ¬ ψ))
 
Theorempm3.37 562 Theorem *3.37 (Transp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Oct-2012.)
(((φ ψ) → χ) → ((φ ¬ χ) → ¬ ψ))
 
Theoremnan 563 Theorem to move a conjunct in and out of a negation. (Contributed by NM, 9-Nov-2003.)
((φ → ¬ (ψ χ)) ↔ ((φ ψ) → ¬ χ))
 
Theorempm4.15 564 Theorem *4.15 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 18-Nov-2012.)
(((φ ψ) → ¬ χ) ↔ ((ψ χ) → ¬ φ))
 
Theorempm4.78 565 Theorem *4.78 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
(((φψ) (φχ)) ↔ (φ → (ψ χ)))
 
Theorempm4.79 566 Theorem *4.79 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 27-Jun-2013.)
(((ψφ) (χφ)) ↔ ((ψ χ) → φ))
 
Theorempm4.87 567 Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Eric Schmidt, 26-Oct-2006.)
(((((φ ψ) → χ) ↔ (φ → (ψχ))) ((φ → (ψχ)) ↔ (ψ → (φχ)))) ((ψ → (φχ)) ↔ ((ψ φ) → χ)))
 
Theorempm3.33 568 Theorem *3.33 (Syll) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)
(((φψ) (ψχ)) → (φχ))
 
Theorempm3.34 569 Theorem *3.34 (Syll) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)
(((ψχ) (φψ)) → (φχ))
 
Theorempm3.35 570 Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. (Contributed by NM, 14-Dec-2002.)
((φ (φψ)) → ψ)
 
Theorempm5.31 571 Theorem *5.31 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
((χ (φψ)) → (φ → (ψ χ)))
 
Theoremimp4a 572 An importation inference. (Contributed by NM, 26-Apr-1994.)
(φ → (ψ → (χ → (θτ))))       (φ → (ψ → ((χ θ) → τ)))
 
Theoremimp4b 573 An importation inference. (Contributed by NM, 26-Apr-1994.)
(φ → (ψ → (χ → (θτ))))       ((φ ψ) → ((χ θ) → τ))
 
Theoremimp4c 574 An importation inference. (Contributed by NM, 26-Apr-1994.)
(φ → (ψ → (χ → (θτ))))       (φ → (((ψ χ) θ) → τ))
 
Theoremimp4d 575 An importation inference. (Contributed by NM, 26-Apr-1994.)
(φ → (ψ → (χ → (θτ))))       (φ → ((ψ (χ θ)) → τ))
 
Theoremimp41 576 An importation inference. (Contributed by NM, 26-Apr-1994.)
(φ → (ψ → (χ → (θτ))))       ((((φ ψ) χ) θ) → τ)
 
Theoremimp42 577 An importation inference. (Contributed by NM, 26-Apr-1994.)
(φ → (ψ → (χ → (θτ))))       (((φ (ψ χ)) θ) → τ)
 
Theoremimp43 578 An importation inference. (Contributed by NM, 26-Apr-1994.)
(φ → (ψ → (χ → (θτ))))       (((φ ψ) (χ θ)) → τ)
 
Theoremimp44 579 An importation inference. (Contributed by NM, 26-Apr-1994.)
(φ → (ψ → (χ → (θτ))))       ((φ ((ψ χ) θ)) → τ)
 
Theoremimp45 580 An importation inference. (Contributed by NM, 26-Apr-1994.)
(φ → (ψ → (χ → (θτ))))       ((φ (ψ (χ θ))) → τ)
 
Theoremimp5a 581 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(φ → (ψ → (χ → (θ → (τη)))))       (φ → (ψ → (χ → ((θ τ) → η))))
 
Theoremimp5d 582 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(φ → (ψ → (χ → (θ → (τη)))))       (((φ ψ) χ) → ((θ τ) → η))
 
Theoremimp5g 583 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(φ → (ψ → (χ → (θ → (τη)))))       ((φ ψ) → (((χ θ) τ) → η))
 
Theoremimp55 584 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(φ → (ψ → (χ → (θ → (τη)))))       (((φ (ψ (χ θ))) τ) → η)
 
Theoremimp511 585 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(φ → (ψ → (χ → (θ → (τη)))))       ((φ ((ψ (χ θ)) τ)) → η)
 
Theoremexpimpd 586 Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.)
((φ ψ) → (χθ))       (φ → ((ψ χ) → θ))
 
Theoremexp31 587 An exportation inference. (Contributed by NM, 26-Apr-1994.)
(((φ ψ) χ) → θ)       (φ → (ψ → (χθ)))
 
Theoremexp32 588 An exportation inference. (Contributed by NM, 26-Apr-1994.)
((φ (ψ χ)) → θ)       (φ → (ψ → (χθ)))
 
Theoremexp4a 589 An exportation inference. (Contributed by NM, 26-Apr-1994.)
(φ → (ψ → ((χ θ) → τ)))       (φ → (ψ → (χ → (θτ))))
 
Theoremexp4b 590 An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
((φ ψ) → ((χ θ) → τ))       (φ → (ψ → (χ → (θτ))))
 
Theoremexp4c 591 An exportation inference. (Contributed by NM, 26-Apr-1994.)
(φ → (((ψ χ) θ) → τ))       (φ → (ψ → (χ → (θτ))))
 
Theoremexp4d 592 An exportation inference. (Contributed by NM, 26-Apr-1994.)
(φ → ((ψ (χ θ)) → τ))       (φ → (ψ → (χ → (θτ))))
 
Theoremexp41 593 An exportation inference. (Contributed by NM, 26-Apr-1994.)
((((φ ψ) χ) θ) → τ)       (φ → (ψ → (χ → (θτ))))
 
Theoremexp42 594 An exportation inference. (Contributed by NM, 26-Apr-1994.)
(((φ (ψ χ)) θ) → τ)       (φ → (ψ → (χ → (θτ))))
 
Theoremexp43 595 An exportation inference. (Contributed by NM, 26-Apr-1994.)
(((φ ψ) (χ θ)) → τ)       (φ → (ψ → (χ → (θτ))))
 
Theoremexp44 596 An exportation inference. (Contributed by NM, 26-Apr-1994.)
((φ ((ψ χ) θ)) → τ)       (φ → (ψ → (χ → (θτ))))
 
Theoremexp45 597 An exportation inference. (Contributed by NM, 26-Apr-1994.)
((φ (ψ (χ θ))) → τ)       (φ → (ψ → (χ → (θτ))))
 
Theoremexpr 598 Export a wff from a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.)
((φ (ψ χ)) → θ)       ((φ ψ) → (χθ))
 
Theoremexp5c 599 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(φ → ((ψ χ) → ((θ τ) → η)))       (φ → (ψ → (χ → (θ → (τη)))))
 
Theoremexp53 600 An exportation inference. (Contributed by Jeff Hankins, 30-Aug-2009.)
((((φ ψ) (χ θ)) τ) → η)       (φ → (ψ → (χ → (θ → (τη)))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6338
  Copyright terms: Public domain < Previous  Next >