NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.61iii GIF version

Theorem pm2.61iii 159
Description: Inference eliminating three antecedents. (Contributed by NM, 2-Jan-2002.) (Proof shortened by Wolf Lammen, 22-Sep-2013.)
Hypotheses
Ref Expression
pm2.61iii.1 φ → (¬ ψ → (¬ χθ)))
pm2.61iii.2 (φθ)
pm2.61iii.3 (ψθ)
pm2.61iii.4 (χθ)
Assertion
Ref Expression
pm2.61iii θ

Proof of Theorem pm2.61iii
StepHypRef Expression
1 pm2.61iii.4 . 2 (χθ)
2 pm2.61iii.1 . . 3 φ → (¬ ψ → (¬ χθ)))
3 pm2.61iii.2 . . . 4 (φθ)
43a1d 22 . . 3 (φ → (¬ χθ))
5 pm2.61iii.3 . . . 4 (ψθ)
65a1d 22 . . 3 (ψ → (¬ χθ))
72, 4, 6pm2.61ii 157 . 2 χθ)
81, 7pm2.61i 156 1 θ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator