NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.61nii GIF version

Theorem pm2.61nii 158
Description: Inference eliminating two antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 13-Nov-2012.)
Hypotheses
Ref Expression
pm2.61nii.1 (φ → (ψχ))
pm2.61nii.2 φχ)
pm2.61nii.3 ψχ)
Assertion
Ref Expression
pm2.61nii χ

Proof of Theorem pm2.61nii
StepHypRef Expression
1 pm2.61nii.1 . . 3 (φ → (ψχ))
2 pm2.61nii.3 . . 3 ψχ)
31, 2pm2.61d1 151 . 2 (φχ)
4 pm2.61nii.2 . 2 φχ)
53, 4pm2.61i 156 1 χ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  ecase  908  3ecase  1286
  Copyright terms: Public domain W3C validator