New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm2.61i | GIF version |
Description: Inference eliminating an antecedent. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2013.) |
Ref | Expression |
---|---|
pm2.61i.1 | ⊢ (φ → ψ) |
pm2.61i.2 | ⊢ (¬ φ → ψ) |
Ref | Expression |
---|---|
pm2.61i | ⊢ ψ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (φ → φ) | |
2 | pm2.61i.2 | . . 3 ⊢ (¬ φ → ψ) | |
3 | pm2.61i.1 | . . 3 ⊢ (φ → ψ) | |
4 | 2, 3 | ja 153 | . 2 ⊢ ((φ → φ) → ψ) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ψ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.61ii 157 pm2.61nii 158 pm2.61iii 159 pm2.65i 165 pm5.21nii 342 pm5.18 345 biass 348 pm2.61ian 765 ecase3 907 4cases 915 elimh 922 pm4.42 926 3ecase 1286 ax9 1949 dvelimh 1964 exdistrf 1971 equveli 1988 dfsb2 2055 sbn 2062 sbi1 2063 sbco2 2086 sbco3 2088 sb9i 2094 ax11v 2096 hbs1 2105 nfsb 2109 sbal1 2126 sbal 2127 dvelimALT 2133 ax11 2155 equid1 2158 equid1ALT 2176 dvelimf-o 2180 ax11inda2ALT 2198 ax11inda2 2199 eujustALT 2207 moexex 2273 pm2.61ne 2592 pm2.61ine 2593 rgen2a 2681 ralcom2 2776 eueq2 3011 moeq3 3014 mo2icl 3016 sbc2or 3055 unineq 3506 ralidm 3654 ifsb 3672 ifid 3695 ifnot 3701 ifan 3702 ifor 3703 elimhyp 3711 elimhyp2v 3712 elimhyp3v 3713 elimhyp4v 3714 elimdhyp 3716 keephyp2v 3718 keephyp3v 3719 ssunsn2 3866 snex 4112 setswith 4322 iotassuni 4356 iotaex 4357 dfiota3 4371 dfiota4 4373 snfi 4432 eqtfinrelk 4487 dfphi2 4570 copsexg 4608 phiall 4619 dfid3 4769 imasn 5019 dmsnopss 5068 fveqres 5356 eqfnfv 5393 f0cli 5419 fvunsn 5445 fconst5 5456 elimdelov 5574 ndmovcl 5615 ndmovord 5621 fvmptss 5706 fvmptex 5722 fvmptss2 5726 fvfullfun 5865 nchoicelem12 6301 frecxp 6315 |
Copyright terms: Public domain | W3C validator |