| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm2.64 | GIF version | ||
| Description: Theorem *2.64 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm2.64 | ⊢ ((φ ∨ ψ) → ((φ ∨ ¬ ψ) → φ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-1 6 | . . 3 ⊢ (φ → ((φ ∨ ψ) → φ)) | |
| 2 | orel2 372 | . . 3 ⊢ (¬ ψ → ((φ ∨ ψ) → φ)) | |
| 3 | 1, 2 | jaoi 368 | . 2 ⊢ ((φ ∨ ¬ ψ) → ((φ ∨ ψ) → φ)) | 
| 4 | 3 | com12 27 | 1 ⊢ ((φ ∨ ψ) → ((φ ∨ ¬ ψ) → φ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |