NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.64 GIF version

Theorem pm2.64 764
Description: Theorem *2.64 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.64 ((φ ψ) → ((φ ¬ ψ) → φ))

Proof of Theorem pm2.64
StepHypRef Expression
1 ax-1 6 . . 3 (φ → ((φ ψ) → φ))
2 orel2 372 . . 3 ψ → ((φ ψ) → φ))
31, 2jaoi 368 . 2 ((φ ¬ ψ) → ((φ ψ) → φ))
43com12 27 1 ((φ ψ) → ((φ ¬ ψ) → φ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator