New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > orel2 | GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
Ref | Expression |
---|---|
orel2 | ⊢ (¬ φ → ((ψ ∨ φ) → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . 2 ⊢ (¬ φ → (ψ → ψ)) | |
2 | pm2.21 100 | . 2 ⊢ (¬ φ → (φ → ψ)) | |
3 | 1, 2 | jaod 369 | 1 ⊢ (¬ φ → ((ψ ∨ φ) → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: biorfi 396 pm2.64 764 pm2.74 819 pm5.71 902 nndisjeq 4429 xpcan2 5058 funun 5146 enadjlem1 6059 enadj 6060 |
Copyright terms: Public domain | W3C validator |