New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm3.1 | GIF version |
Description: Theorem *3.1 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm3.1 | ⊢ ((φ ∧ ψ) → ¬ (¬ φ ∨ ¬ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anor 475 | . 2 ⊢ ((φ ∧ ψ) ↔ ¬ (¬ φ ∨ ¬ ψ)) | |
2 | 1 | biimpi 186 | 1 ⊢ ((φ ∧ ψ) → ¬ (¬ φ ∨ ¬ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: pm3.14 488 |
Copyright terms: Public domain | W3C validator |