New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biimpi | GIF version |
Description: Infer an implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biimpi.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
biimpi | ⊢ (φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpi.1 | . 2 ⊢ (φ ↔ ψ) | |
2 | bi1 178 | . 2 ⊢ ((φ ↔ ψ) → (φ → ψ)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: sylbi 187 sylib 188 biimpri 197 mpbi 199 syl5bi 208 syl6ib 217 syl7bi 221 syl8ib 222 bitri 240 pm2.53 362 simplbi 446 simprbi 450 sylanb 458 sylan2b 461 pm3.1 484 orbi2i 505 pm2.32 512 anc2l 538 pm3.37 562 dfbi 610 pm2.76 821 pm5.15 859 pm5.16 860 pm5.75 903 rnlem 931 simp1bi 970 simp2bi 971 simp3bi 972 syl3an1b 1218 syl3an2b 1219 syl3an3b 1220 nic-ax 1438 19.25 1603 sbbii 1653 spvw 1666 hbn1fw 1705 excomim 1742 stdpc5 1798 ax10-16 2190 exmoeu 2246 2mo 2282 eqeq1 2359 eleq2 2414 gencbvex 2902 moeq 3013 euind 3024 reuind 3040 eqsbc2 3104 ssel 3268 unssd 3440 ssind 3480 n0moeu 3563 ss0 3582 uneqdifeq 3639 ssunsn2 3866 eqsn 3868 snex 4112 pwadjoin 4120 prprc2 4123 opkelimagekg 4272 iotabi 4349 uniabio 4350 iotaint 4353 dfiota4 4373 nnsucelrlem3 4427 nnsucelr 4429 nndisjeq 4430 preaddccan2 4456 ltfintri 4467 ssfin 4471 eqtfinrelk 4487 tfinsuc 4499 phi011lem1 4599 phidisjnn 4616 dmxp 4924 resabs1 4993 resima2 5008 imasn 5019 funun 5147 funcnv3 5158 funimass1 5170 funssxp 5234 f1ocnv 5300 f1o00 5318 fsn2 5435 fconst5 5456 oprabid 5551 eloprabga 5579 op1st2nd 5791 pw1fnf1o 5856 clos1induct 5881 peano4nc 6151 dflec2 6211 ce2le 6234 addccan2nc 6266 nchoice 6309 |
Copyright terms: Public domain | W3C validator |