NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm5.35 GIF version

Theorem pm5.35 869
Description: Theorem *5.35 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.35 (((φψ) (φχ)) → (φ → (ψχ)))

Proof of Theorem pm5.35
StepHypRef Expression
1 pm5.1 830 . 2 (((φψ) (φχ)) → ((φψ) ↔ (φχ)))
21pm5.74rd 239 1 (((φψ) (φχ)) → (φ → (ψχ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator