New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.54 | GIF version |
Description: Theorem *5.54 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 7-Nov-2013.) |
Ref | Expression |
---|---|
pm5.54 | ⊢ (((φ ∧ ψ) ↔ φ) ∨ ((φ ∧ ψ) ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 489 | . . . . 5 ⊢ (ψ → (φ ↔ (φ ∧ ψ))) | |
2 | 1 | bicomd 192 | . . . 4 ⊢ (ψ → ((φ ∧ ψ) ↔ φ)) |
3 | 2 | adantl 452 | . . 3 ⊢ ((φ ∧ ψ) → ((φ ∧ ψ) ↔ φ)) |
4 | 3, 2 | pm5.21ni 341 | . 2 ⊢ (¬ ((φ ∧ ψ) ↔ φ) → ((φ ∧ ψ) ↔ ψ)) |
5 | 4 | orri 365 | 1 ⊢ (((φ ∧ ψ) ↔ φ) ∨ ((φ ∧ ψ) ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |