| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm5.4 | GIF version | ||
| Description: Antecedent absorption implication. Theorem *5.4 of [WhiteheadRussell] p. 125. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm5.4 | ⊢ ((φ → (φ → ψ)) ↔ (φ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.43 47 | . 2 ⊢ ((φ → (φ → ψ)) → (φ → ψ)) | |
| 2 | ax-1 6 | . 2 ⊢ ((φ → ψ) → (φ → (φ → ψ))) | |
| 3 | 1, 2 | impbii 180 | 1 ⊢ ((φ → (φ → ψ)) ↔ (φ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: moabs 2248 |
| Copyright terms: Public domain | W3C validator |