New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > impbii | GIF version |
Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
impbii.1 | ⊢ (φ → ψ) |
impbii.2 | ⊢ (ψ → φ) |
Ref | Expression |
---|---|
impbii | ⊢ (φ ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbii.1 | . 2 ⊢ (φ → ψ) | |
2 | impbii.2 | . 2 ⊢ (ψ → φ) | |
3 | bi3 179 | . 2 ⊢ ((φ → ψ) → ((ψ → φ) → (φ ↔ ψ))) | |
4 | 1, 2, 3 | mp2 17 | 1 ⊢ (φ ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: dfbi1 184 bicom 191 biid 227 2th 230 pm5.74 235 bitri 240 notnot 282 con34b 283 notbi 286 bibi2i 304 con1b 323 con2b 324 bi2.04 350 pm5.4 351 imdi 352 pm4.8 354 pm4.81 355 orcom 376 dfor2 400 impexp 433 ancom 437 oridm 500 orbi2i 505 or12 509 pm4.45im 545 pm4.44 560 pm4.79 566 anass 630 jaob 758 jcab 833 andi 837 pm4.72 846 oibabs 851 pm4.82 894 consensus 925 rnlem 931 3jaob 1244 truan 1331 dfnot 1332 3impexp 1366 3impexpbicom 1367 cad1 1398 tbw-bijust 1463 tbw-negdf 1464 19.26 1593 sbbii 1653 19.9v 1664 equcom 1680 ax12b 1689 19.3vOLD 1696 cbvalw 1701 cbvalvw 1702 alcom 1737 19.9hOLD 1781 19.3 1785 19.23hOLD 1820 equsalhwOLD 1839 19.21hOLD 1840 excomOLD 1859 19.41 1879 ax12olem1 1927 ax12olem3 1929 equsal 1960 cbval 1984 equs45f 1989 equvin 2001 sb6f 2039 dfsb2 2055 sbn 2062 sbim 2065 sb5rf 2090 sb6rf 2091 sb8 2092 sb9 2095 mo 2226 eu2 2229 mo2 2233 exmoeu 2246 euan 2261 2mo 2282 2eu6 2289 axext4 2337 cleqh 2450 nebi 2588 r19.26 2747 ralcom3 2777 ceqsex 2894 gencbvex 2902 gencbvex2 2903 eqvinc 2967 pm13.183 2980 rr19.3v 2981 rr19.28v 2982 euxfr2 3022 reu6 3026 reu3 3027 sbnfc2 3197 sspss 3369 unineq 3506 uneqin 3507 undif3 3516 difrab 3530 compleqb 3544 un00 3587 ssdifeq0 3633 r19.2zb 3641 ralf0 3657 elpr2 3753 snidb 3760 difsnb 3851 pwpw0 3856 sssn 3865 pwsnALT 3883 unissint 3951 uniintsn 3964 iununi 4051 unipw 4118 sspwb 4119 pwadjoin 4120 preq12b 4128 pw10b 4167 pw1disj 4168 pw1exb 4327 pw1equn 4332 pw1eqadj 4333 sspw1 4336 sspw12 4337 nnc0suc 4413 lefinlteq 4464 phi11 4597 phi011 4600 opth 4603 opexb 4604 ssopab2b 4714 ssrel 4845 xpid11 4927 iss 5001 xpnz 5046 ssrnres 5060 cnveqb 5064 cnvtr 5099 cnvexb 5104 dfxp2 5114 fn0 5203 funssxp 5234 f00 5250 dffo2 5274 ffoss 5315 f1o00 5318 fo00 5319 fv3 5342 dffn5 5364 dff2 5420 dff3 5421 dffo4 5424 dffo5 5425 ffnfv 5428 fsn 5433 fsn2 5435 fconstfv 5457 isores1 5495 eqfnov2 5591 fmpt 5693 brtxp 5784 op1st2nd 5791 clos1basesuc 5883 map0 6026 mapsn 6027 ensym 6038 en0 6043 enpw1 6063 mucnc 6132 1cnc 6140 dflec3 6222 nclenc 6223 lenc 6224 ncfin 6248 |
Copyright terms: Public domain | W3C validator |