NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  moabs GIF version

Theorem moabs 2248
Description: Absorption of existence condition by "at most one." (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
moabs (∃*xφ ↔ (xφ∃*xφ))

Proof of Theorem moabs
StepHypRef Expression
1 pm5.4 351 . 2 ((xφ → (xφ∃!xφ)) ↔ (xφ∃!xφ))
2 df-mo 2209 . . 3 (∃*xφ ↔ (xφ∃!xφ))
32imbi2i 303 . 2 ((xφ∃*xφ) ↔ (xφ → (xφ∃!xφ)))
41, 3, 23bitr4ri 269 1 (∃*xφ ↔ (xφ∃*xφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wex 1541  ∃!weu 2204  ∃*wmo 2205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-mo 2209
This theorem is referenced by:  dffun7  5134
  Copyright terms: Public domain W3C validator