NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm5.5 GIF version

Theorem pm5.5 326
Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.5 (φ → ((φψ) ↔ ψ))

Proof of Theorem pm5.5
StepHypRef Expression
1 biimt 325 . 2 (φ → (ψ ↔ (φψ)))
21bicomd 192 1 (φ → ((φψ) ↔ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  imim21b  356  elabgt  2983  sbceqal  3098
  Copyright terms: Public domain W3C validator