Proof of Theorem elabgt
Step | Hyp | Ref
| Expression |
1 | | abid 2341 |
. . . . . . 7
⊢ (x ∈ {x ∣ φ} ↔ φ) |
2 | | eleq1 2413 |
. . . . . . 7
⊢ (x = A →
(x ∈
{x ∣
φ} ↔ A ∈ {x ∣ φ})) |
3 | 1, 2 | syl5bbr 250 |
. . . . . 6
⊢ (x = A →
(φ ↔ A ∈ {x ∣ φ})) |
4 | 3 | bibi1d 310 |
. . . . 5
⊢ (x = A →
((φ ↔ ψ) ↔ (A ∈ {x ∣ φ} ↔ ψ))) |
5 | 4 | biimpd 198 |
. . . 4
⊢ (x = A →
((φ ↔ ψ) → (A ∈ {x ∣ φ} ↔ ψ))) |
6 | 5 | a2i 12 |
. . 3
⊢ ((x = A →
(φ ↔ ψ)) → (x = A →
(A ∈
{x ∣
φ} ↔ ψ))) |
7 | 6 | alimi 1559 |
. 2
⊢ (∀x(x = A →
(φ ↔ ψ)) → ∀x(x = A →
(A ∈
{x ∣
φ} ↔ ψ))) |
8 | | nfcv 2490 |
. . . 4
⊢
ℲxA |
9 | | nfab1 2492 |
. . . . . 6
⊢
Ⅎx{x ∣ φ} |
10 | 9 | nfel2 2502 |
. . . . 5
⊢ Ⅎx A ∈ {x ∣ φ} |
11 | | nfv 1619 |
. . . . 5
⊢ Ⅎxψ |
12 | 10, 11 | nfbi 1834 |
. . . 4
⊢ Ⅎx(A ∈ {x ∣ φ}
↔ ψ) |
13 | | pm5.5 326 |
. . . 4
⊢ (x = A →
((x = A
→ (A ∈ {x ∣ φ}
↔ ψ)) ↔ (A ∈ {x ∣ φ} ↔ ψ))) |
14 | 8, 12, 13 | spcgf 2935 |
. . 3
⊢ (A ∈ B → (∀x(x = A →
(A ∈
{x ∣
φ} ↔ ψ)) → (A ∈ {x ∣ φ} ↔ ψ))) |
15 | 14 | imp 418 |
. 2
⊢ ((A ∈ B ∧ ∀x(x = A →
(A ∈
{x ∣
φ} ↔ ψ))) → (A ∈ {x ∣ φ} ↔ ψ)) |
16 | 7, 15 | sylan2 460 |
1
⊢ ((A ∈ B ∧ ∀x(x = A →
(φ ↔ ψ))) → (A ∈ {x ∣ φ} ↔ ψ)) |