New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bicomd | GIF version |
Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bicomd.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
bicomd | ⊢ (φ → (χ ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomd.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
2 | bicom 191 | . 2 ⊢ ((ψ ↔ χ) ↔ (χ ↔ ψ)) | |
3 | 1, 2 | sylib 188 | 1 ⊢ (φ → (χ ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: impbid2 195 syl5ibr 212 ibir 233 bitr2d 245 bitr3d 246 bitr4d 247 syl5rbb 249 syl6rbb 253 con1bid 320 pm5.5 326 anabs5 784 pm5.55 867 pm5.54 870 baibr 872 baibd 875 rbaibd 876 pm5.75 903 ninba 927 3impexpbicomi 1368 cad1 1398 sbequ12r 1920 sbco 2083 sbco2 2086 cbvab 2472 necon3bbid 2551 necon4bbid 2582 ralcom2 2776 sbralie 2849 gencbvex 2902 sbhypf 2905 clel3g 2977 reu8 3033 sbceq2a 3058 sbcco2 3070 r19.9rzv 3645 sbcsng 3784 opkelcokg 4262 elssetkg 4270 nnsucelrlem2 4426 opabid 4696 fconstfv 5457 isoid 5491 isoini 5498 funsi 5521 resoprab2 5583 nmembers1lem3 6271 epelcres 6329 |
Copyright terms: Public domain | W3C validator |