NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bicomd GIF version

Theorem bicomd 192
Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
bicomd.1 (φ → (ψχ))
Assertion
Ref Expression
bicomd (φ → (χψ))

Proof of Theorem bicomd
StepHypRef Expression
1 bicomd.1 . 2 (φ → (ψχ))
2 bicom 191 . 2 ((ψχ) ↔ (χψ))
31, 2sylib 188 1 (φ → (χψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  impbid2  195  syl5ibr  212  ibir  233  bitr2d  245  bitr3d  246  bitr4d  247  syl5rbb  249  syl6rbb  253  con1bid  320  pm5.5  326  anabs5  784  pm5.55  867  pm5.54  870  baibr  872  baibd  875  rbaibd  876  pm5.75  903  ninba  927  3impexpbicomi  1368  cad1  1398  sbequ12r  1920  sbco  2083  sbco2  2086  cbvab  2472  necon3bbid  2551  necon4bbid  2582  ralcom2  2776  sbralie  2849  gencbvex  2902  sbhypf  2905  clel3g  2977  reu8  3033  sbceq2a  3058  sbcco2  3070  r19.9rzv  3645  sbcsng  3784  opkelcokg  4262  elssetkg  4270  nnsucelrlem2  4426  opabid  4696  fconstfv  5457  isoid  5491  isoini  5498  funsi  5521  resoprab2  5583  nmembers1lem3  6271  epelcres  6329
  Copyright terms: Public domain W3C validator