NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simp-9l GIF version

Theorem simp-9l 752
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
simp-9l ((((((((((φ ψ) χ) θ) τ) η) ζ) σ) ρ) μ) → φ)

Proof of Theorem simp-9l
StepHypRef Expression
1 simp-8l 750 . 2 (((((((((φ ψ) χ) θ) τ) η) ζ) σ) ρ) → φ)
21adantr 451 1 ((((((((((φ ψ) χ) θ) τ) η) ζ) σ) ρ) μ) → φ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  simp-10l  754
  Copyright terms: Public domain W3C validator