New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simp-9r | GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
simp-9r | ⊢ ((((((((((φ ∧ ψ) ∧ χ) ∧ θ) ∧ τ) ∧ η) ∧ ζ) ∧ σ) ∧ ρ) ∧ μ) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp-8r 751 | . 2 ⊢ (((((((((φ ∧ ψ) ∧ χ) ∧ θ) ∧ τ) ∧ η) ∧ ζ) ∧ σ) ∧ ρ) → ψ) | |
2 | 1 | adantr 451 | 1 ⊢ ((((((((((φ ∧ ψ) ∧ χ) ∧ θ) ∧ τ) ∧ η) ∧ ζ) ∧ σ) ∧ ρ) ∧ μ) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: simp-10r 755 |
Copyright terms: Public domain | W3C validator |