NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simplbi2comg GIF version

Theorem simplbi2comg 1373
Description: Implication form of simplbi2com 1374. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.) TODO: decide if this is worth keeping.
Assertion
Ref Expression
simplbi2comg ((φ ↔ (ψ χ)) → (χ → (ψφ)))

Proof of Theorem simplbi2comg
StepHypRef Expression
1 bi2 189 . 2 ((φ ↔ (ψ χ)) → ((ψ χ) → φ))
21exp3acom23 1372 1 ((φ ↔ (ψ χ)) → (χ → (ψφ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator