New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bi2 | GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
bi2 | ⊢ ((φ ↔ ψ) → (ψ → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 184 | . 2 ⊢ ((φ ↔ ψ) ↔ ¬ ((φ → ψ) → ¬ (ψ → φ))) | |
2 | simprim 142 | . 2 ⊢ (¬ ((φ → ψ) → ¬ (ψ → φ)) → (ψ → φ)) | |
3 | 1, 2 | sylbi 187 | 1 ⊢ ((φ ↔ ψ) → (ψ → φ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bicom1 190 pm5.74 235 bi3ant 280 bija 344 pm4.72 846 exbir 1365 simplbi2comg 1373 albi 1564 exbi 1581 cbv2h 1980 sbied 2036 2eu6 2289 ceqsalt 2882 euind 3024 reu6 3026 reuind 3040 sbciegft 3077 iota4 4358 fv3 5342 |
Copyright terms: Public domain | W3C validator |