NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylan2i GIF version

Theorem sylan2i 636
Description: A syllogism inference. (Contributed by NM, 1-Aug-1994.)
Hypotheses
Ref Expression
sylan2i.1 (φθ)
sylan2i.2 (ψ → ((χ θ) → τ))
Assertion
Ref Expression
sylan2i (ψ → ((χ φ) → τ))

Proof of Theorem sylan2i
StepHypRef Expression
1 sylan2i.1 . . 3 (φθ)
21a1i 10 . 2 (ψ → (φθ))
3 sylan2i.2 . 2 (ψ → ((χ θ) → τ))
42, 3sylan2d 468 1 (ψ → ((χ φ) → τ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  syl2ani  637
  Copyright terms: Public domain W3C validator