NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl2ani GIF version

Theorem syl2ani 637
Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.)
Hypotheses
Ref Expression
syl2ani.1 (φχ)
syl2ani.2 (ηθ)
syl2ani.3 (ψ → ((χ θ) → τ))
Assertion
Ref Expression
syl2ani (ψ → ((φ η) → τ))

Proof of Theorem syl2ani
StepHypRef Expression
1 syl2ani.1 . 2 (φχ)
2 syl2ani.2 . . 3 (ηθ)
3 syl2ani.3 . . 3 (ψ → ((χ θ) → τ))
42, 3sylan2i 636 . 2 (ψ → ((χ η) → τ))
51, 4sylani 635 1 (ψ → ((φ η) → τ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator