NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syldd GIF version

Theorem syldd 61
Description: Nested syllogism deduction. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 11-May-2013.)
Hypotheses
Ref Expression
syldd.1 (φ → (ψ → (χθ)))
syldd.2 (φ → (ψ → (θτ)))
Assertion
Ref Expression
syldd (φ → (ψ → (χτ)))

Proof of Theorem syldd
StepHypRef Expression
1 syldd.2 . 2 (φ → (ψ → (θτ)))
2 syldd.1 . 2 (φ → (ψ → (χθ)))
3 imim2 49 . 2 ((θτ) → ((χθ) → (χτ)))
41, 2, 3syl6c 60 1 (φ → (ψ → (χτ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  syl5d  62  syl6d  64  ee23  1364
  Copyright terms: Public domain W3C validator