NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imim2 GIF version

Theorem imim2 49
Description: A closed form of syllogism (see syl 15). Theorem *2.05 of [WhiteheadRussell] p. 100. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Sep-2012.)
Assertion
Ref Expression
imim2 ((φψ) → ((χφ) → (χψ)))

Proof of Theorem imim2
StepHypRef Expression
1 id 19 . 2 ((φψ) → (φψ))
21imim2d 48 1 ((φψ) → ((χφ) → (χψ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  syldd  61  pm3.34  569
  Copyright terms: Public domain W3C validator