NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl6c GIF version

Theorem syl6c 60
Description: Inference combining syl6 29 with contraction. (Contributed by Alan Sare, 2-May-2011.)
Hypotheses
Ref Expression
syl6c.1 (φ → (ψχ))
syl6c.2 (φ → (ψθ))
syl6c.3 (χ → (θτ))
Assertion
Ref Expression
syl6c (φ → (ψτ))

Proof of Theorem syl6c
StepHypRef Expression
1 syl6c.2 . 2 (φ → (ψθ))
2 syl6c.1 . . 3 (φ → (ψχ))
3 syl6c.3 . . 3 (χ → (θτ))
42, 3syl6 29 . 2 (φ → (ψ → (θτ)))
51, 4mpdd 36 1 (φ → (ψτ))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  syldd  61  impbidd  181  pm5.21ndd  343  jcad  519  ee22  1362
  Copyright terms: Public domain W3C validator