QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  1bi GIF version

Theorem 1bi 119
Description: Identity inference. (Contributed by NM, 30-Aug-1997.)
Hypothesis
Ref Expression
1bi.1 a = b
Assertion
Ref Expression
1bi 1 = (ab)

Proof of Theorem 1bi
StepHypRef Expression
1 1bi.1 . . 3 a = b
21bi1 118 . 2 (ab) = 1
32ax-r1 35 1 1 = (ab)
Colors of variables: term
Syntax hints:   = wb 1  tb 5  1wt 8
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42
This theorem is referenced by:  wed  441  oi3oa3  733
  Copyright terms: Public domain W3C validator