Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > orabs | GIF version |
Description: Absorption law. (Contributed by NM, 11-Aug-1997.) |
Ref | Expression |
---|---|
orabs | (a ∪ (a ∩ b)) = a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-a 40 | . . 3 (a ∩ b) = (a⊥ ∪ b⊥ )⊥ | |
2 | 1 | lor 70 | . 2 (a ∪ (a ∩ b)) = (a ∪ (a⊥ ∪ b⊥ )⊥ ) |
3 | ax-a5 34 | . 2 (a ∪ (a⊥ ∪ b⊥ )⊥ ) = a | |
4 | 2, 3 | ax-r2 36 | 1 (a ∪ (a ∩ b)) = a |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r5 38 |
This theorem depends on definitions: df-a 40 |
This theorem is referenced by: leao 124 omlem1 127 lea 160 lecom 180 wa5b 200 nom12 309 nom13 310 wcomlem 382 wlecom 409 oml5 449 comcom 453 i3lem3 506 lem4 511 i3abs1 522 i3th1 543 i3con 551 ud1lem1 560 ud2lem3 565 ud3lem1 570 ud3lem3c 574 ud5lem3 594 u5lemaa 604 u5lemoa 624 u12lem 771 u3lem7 774 u1lem11 780 u3lem10 785 i1abs 801 test 802 3vded3 819 1oaii 824 sa5 836 neg3antlem2 865 gomaex3lem3 916 oau 929 oa23 936 oa3-6lem 980 oalii 1002 oalem2 1006 lem3.3.7i2e2 1064 lem3.3.7i3e1 1066 lem3.3.7i3e2 1067 lem4.6.2e1 1082 dp15lemd 1157 xdp15 1199 xxdp15 1202 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 |
Copyright terms: Public domain | W3C validator |