Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > 3oa3 | GIF version |
Description: 3-variable orthoarguesion law expressed with the 3OA identity abbreviation. (Contributed by NM, 27-May-2004.) |
Ref | Expression |
---|---|
3oa3 | ((a →1 c) ∩ (a ≡ c ≡OA b)) ≤ (b →1 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id3oa 57 | . . 3 (a ≡ c ≡OA b) = (((a →1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))) | |
2 | 1 | lan 77 | . 2 ((a →1 c) ∩ (a ≡ c ≡OA b)) = ((a →1 c) ∩ (((a →1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))) |
3 | 3oa2 1024 | . 2 ((a →1 c) ∩ (((a →1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))) ≤ (b →1 c) | |
4 | 2, 3 | bltr 138 | 1 ((a →1 c) ∩ (a ≡ c ≡OA b)) ≤ (b →1 c) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 ≡ wid3oa 27 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 ax-3oa 998 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-id3oa 57 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |