Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > df-i1 | GIF version |
Description: Define Sasaki (Mittelstaedt) conditional. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
df-i1 | (a →1 b) = (a⊥ ∪ (a ∩ b)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wva | . . 3 term a | |
2 | wvb | . . 3 term b | |
3 | 1, 2 | wi1 12 | . 2 term (a →1 b) |
4 | 1 | wn 4 | . . 3 term a⊥ |
5 | 1, 2 | wa 7 | . . 3 term (a ∩ b) |
6 | 4, 5 | wo 6 | . 2 term (a⊥ ∪ (a ∩ b)) |
7 | 3, 6 | wb 1 | 1 wff (a →1 b) = (a⊥ ∪ (a ∩ b)) |
Copyright terms: Public domain | W3C validator |