Detailed syntax breakdown of Axiom ax-oa6
Step | Hyp | Ref
| Expression |
1 | | wva |
. . . . 5
term a |
2 | | wvb |
. . . . 5
term b |
3 | 1, 2 | wo 6 |
. . . 4
term (a ∪ b) |
4 | | wvc |
. . . . 5
term c |
5 | | wvd |
. . . . 5
term d |
6 | 4, 5 | wo 6 |
. . . 4
term (c ∪ d) |
7 | 3, 6 | wa 7 |
. . 3
term ((a ∪ b) ∩
(c ∪ d)) |
8 | | wve |
. . . 4
term e |
9 | | wvf |
. . . 4
term f |
10 | 8, 9 | wo 6 |
. . 3
term (e ∪ f) |
11 | 7, 10 | wa 7 |
. 2
term (((a ∪ b) ∩
(c ∪ d)) ∩ (e
∪ f)) |
12 | 1, 4 | wo 6 |
. . . . . . 7
term (a ∪ c) |
13 | 2, 5 | wo 6 |
. . . . . . 7
term (b ∪ d) |
14 | 12, 13 | wa 7 |
. . . . . 6
term ((a ∪ c) ∩
(b ∪ d)) |
15 | 1, 8 | wo 6 |
. . . . . . . 8
term (a ∪ e) |
16 | 2, 9 | wo 6 |
. . . . . . . 8
term (b ∪ f) |
17 | 15, 16 | wa 7 |
. . . . . . 7
term ((a ∪ e) ∩
(b ∪ f)) |
18 | 4, 8 | wo 6 |
. . . . . . . 8
term (c ∪ e) |
19 | 5, 9 | wo 6 |
. . . . . . . 8
term (d ∪ f) |
20 | 18, 19 | wa 7 |
. . . . . . 7
term ((c ∪ e) ∩
(d ∪ f)) |
21 | 17, 20 | wo 6 |
. . . . . 6
term (((a ∪ e) ∩
(b ∪ f)) ∪ ((c
∪ e) ∩ (d ∪ f))) |
22 | 14, 21 | wa 7 |
. . . . 5
term (((a ∪ c) ∩
(b ∪ d)) ∩ (((a
∪ e) ∩ (b ∪ f))
∪ ((c ∪ e) ∩ (d
∪ f)))) |
23 | 4, 22 | wo 6 |
. . . 4
term (c ∪ (((a
∪ c) ∩ (b ∪ d))
∩ (((a ∪ e) ∩ (b
∪ f)) ∪ ((c ∪ e) ∩
(d ∪ f))))) |
24 | 1, 23 | wa 7 |
. . 3
term (a ∩ (c ∪
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∪ e) ∩
(b ∪ f)) ∪ ((c
∪ e) ∩ (d ∪ f)))))) |
25 | 2, 24 | wo 6 |
. 2
term (b ∪ (a ∩
(c ∪ (((a ∪ c) ∩
(b ∪ d)) ∩ (((a
∪ e) ∩ (b ∪ f))
∪ ((c ∪ e) ∩ (d
∪ f))))))) |
26 | 11, 25 | wle 2 |
1
wff (((a ∪ b) ∩
(c ∪ d)) ∩ (e
∪ f)) ≤ (b ∪ (a ∩
(c ∪ (((a ∪ c) ∩
(b ∪ d)) ∩ (((a
∪ e) ∩ (b ∪ f))
∪ ((c ∪ e) ∩ (d
∪ f))))))) |