Proof of Theorem oa3moa3
| Step | Hyp | Ref
| Expression |
| 1 | | oa3moa3.1 |
. . . . . 6
a ≤ b⊥ |
| 2 | 1 | lecon3 157 |
. . . . 5
b ≤ a⊥ |
| 3 | | oa3moa3.2 |
. . . . . . . 8
c ≤ d⊥ |
| 4 | 3 | lecon3 157 |
. . . . . . 7
d ≤ c⊥ |
| 5 | | oa3moa3.4 |
. . . . . . 7
e ≤ c⊥ |
| 6 | 4, 5 | lel2or 170 |
. . . . . 6
(d ∪ e) ≤ c⊥ |
| 7 | 6 | lecon3 157 |
. . . . 5
c ≤ (d ∪ e)⊥ |
| 8 | 2, 7 | ax-oal4 1026 |
. . . 4
((b ∪ a) ∩ (c
∪ (d ∪ e))) ≤ (a
∪ (b ∩ (c ∪ ((b
∪ c) ∩ (a ∪ (d ∪
e)))))) |
| 9 | | ax-a2 31 |
. . . . 5
(a ∪ b) = (b ∪
a) |
| 10 | | ax-a3 32 |
. . . . 5
((c ∪ d) ∪ e) =
(c ∪ (d ∪ e)) |
| 11 | 9, 10 | 2an 79 |
. . . 4
((a ∪ b) ∩ ((c
∪ d) ∪ e)) = ((b ∪
a) ∩ (c ∪ (d ∪
e))) |
| 12 | | orass 75 |
. . . . . . . 8
((a ∪ d) ∪ e) =
(a ∪ (d ∪ e)) |
| 13 | 12 | lan 77 |
. . . . . . 7
((b ∪ c) ∩ ((a
∪ d) ∪ e)) = ((b ∪
c) ∩ (a ∪ (d ∪
e))) |
| 14 | 13 | lor 70 |
. . . . . 6
(c ∪ ((b ∪ c) ∩
((a ∪ d) ∪ e))) =
(c ∪ ((b ∪ c) ∩
(a ∪ (d ∪ e)))) |
| 15 | 14 | lan 77 |
. . . . 5
(b ∩ (c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e)))) = (b ∩ (c ∪
((b ∪ c) ∩ (a
∪ (d ∪ e))))) |
| 16 | 15 | lor 70 |
. . . 4
(a ∪ (b ∩ (c ∪
((b ∪ c) ∩ ((a
∪ d) ∪ e))))) = (a
∪ (b ∩ (c ∪ ((b
∪ c) ∩ (a ∪ (d ∪
e)))))) |
| 17 | 8, 11, 16 | le3tr1 140 |
. . 3
((a ∪ b) ∩ ((c
∪ d) ∪ e)) ≤ (a
∪ (b ∩ (c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e))))) |
| 18 | | oa3moa3.3 |
. . . . . . . . . 10
d ≤ e⊥ |
| 19 | 18 | lecon3 157 |
. . . . . . . . 9
e ≤ d⊥ |
| 20 | 3, 19 | lel2or 170 |
. . . . . . . 8
(c ∪ e) ≤ d⊥ |
| 21 | 20 | lecon3 157 |
. . . . . . 7
d ≤ (c ∪ e)⊥ |
| 22 | 2, 21 | ax-oal4 1026 |
. . . . . 6
((b ∪ a) ∩ (d
∪ (c ∪ e))) ≤ (a
∪ (b ∩ (d ∪ ((b
∪ d) ∩ (a ∪ (c ∪
e)))))) |
| 23 | | ax-a2 31 |
. . . . . . . . 9
(c ∪ d) = (d ∪
c) |
| 24 | 23 | ror 71 |
. . . . . . . 8
((c ∪ d) ∪ e) =
((d ∪ c) ∪ e) |
| 25 | | orass 75 |
. . . . . . . 8
((d ∪ c) ∪ e) =
(d ∪ (c ∪ e)) |
| 26 | 24, 25 | tr 62 |
. . . . . . 7
((c ∪ d) ∪ e) =
(d ∪ (c ∪ e)) |
| 27 | 9, 26 | 2an 79 |
. . . . . 6
((a ∪ b) ∩ ((c
∪ d) ∪ e)) = ((b ∪
a) ∩ (d ∪ (c ∪
e))) |
| 28 | | orass 75 |
. . . . . . . . . 10
((a ∪ c) ∪ e) =
(a ∪ (c ∪ e)) |
| 29 | 28 | lan 77 |
. . . . . . . . 9
((b ∪ d) ∩ ((a
∪ c) ∪ e)) = ((b ∪
d) ∩ (a ∪ (c ∪
e))) |
| 30 | 29 | lor 70 |
. . . . . . . 8
(d ∪ ((b ∪ d) ∩
((a ∪ c) ∪ e))) =
(d ∪ ((b ∪ d) ∩
(a ∪ (c ∪ e)))) |
| 31 | 30 | lan 77 |
. . . . . . 7
(b ∩ (d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e)))) = (b ∩ (d ∪
((b ∪ d) ∩ (a
∪ (c ∪ e))))) |
| 32 | 31 | lor 70 |
. . . . . 6
(a ∪ (b ∩ (d ∪
((b ∪ d) ∩ ((a
∪ c) ∪ e))))) = (a
∪ (b ∩ (d ∪ ((b
∪ d) ∩ (a ∪ (c ∪
e)))))) |
| 33 | 22, 27, 32 | le3tr1 140 |
. . . . 5
((a ∪ b) ∩ ((c
∪ d) ∪ e)) ≤ (a
∪ (b ∩ (d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e))))) |
| 34 | 5 | lecon3 157 |
. . . . . . . . 9
c ≤ e⊥ |
| 35 | 34, 18 | lel2or 170 |
. . . . . . . 8
(c ∪ d) ≤ e⊥ |
| 36 | 35 | lecon3 157 |
. . . . . . 7
e ≤ (c ∪ d)⊥ |
| 37 | 2, 36 | ax-oal4 1026 |
. . . . . 6
((b ∪ a) ∩ (e
∪ (c ∪ d))) ≤ (a
∪ (b ∩ (e ∪ ((b
∪ e) ∩ (a ∪ (c ∪
d)))))) |
| 38 | | ax-a2 31 |
. . . . . . 7
((c ∪ d) ∪ e) =
(e ∪ (c ∪ d)) |
| 39 | 9, 38 | 2an 79 |
. . . . . 6
((a ∪ b) ∩ ((c
∪ d) ∪ e)) = ((b ∪
a) ∩ (e ∪ (c ∪
d))) |
| 40 | | ax-a3 32 |
. . . . . . . . . 10
((a ∪ c) ∪ d) =
(a ∪ (c ∪ d)) |
| 41 | 40 | lan 77 |
. . . . . . . . 9
((b ∪ e) ∩ ((a
∪ c) ∪ d)) = ((b ∪
e) ∩ (a ∪ (c ∪
d))) |
| 42 | 41 | lor 70 |
. . . . . . . 8
(e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d))) =
(e ∪ ((b ∪ e) ∩
(a ∪ (c ∪ d)))) |
| 43 | 42 | lan 77 |
. . . . . . 7
(b ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d)))) = (b ∩ (e ∪
((b ∪ e) ∩ (a
∪ (c ∪ d))))) |
| 44 | 43 | lor 70 |
. . . . . 6
(a ∪ (b ∩ (e ∪
((b ∪ e) ∩ ((a
∪ c) ∪ d))))) = (a
∪ (b ∩ (e ∪ ((b
∪ e) ∩ (a ∪ (c ∪
d)))))) |
| 45 | 37, 39, 44 | le3tr1 140 |
. . . . 5
((a ∪ b) ∩ ((c
∪ d) ∪ e)) ≤ (a
∪ (b ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d))))) |
| 46 | 33, 45 | ler2an 173 |
. . . 4
((a ∪ b) ∩ ((c
∪ d) ∪ e)) ≤ ((a
∪ (b ∩ (d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e))))) ∩ (a ∪ (b ∩
(e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d)))))) |
| 47 | 2 | lel 151 |
. . . . . . . . . 10
(b ∩ (d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e)))) ≤ a⊥ |
| 48 | 47 | lecom 180 |
. . . . . . . . 9
(b ∩ (d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e)))) C a⊥ |
| 49 | 48 | comcom7 460 |
. . . . . . . 8
(b ∩ (d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e)))) C a |
| 50 | 49 | comcom 453 |
. . . . . . 7
a C (b ∩ (d ∪
((b ∪ d) ∩ ((a
∪ c) ∪ e)))) |
| 51 | 2 | lel 151 |
. . . . . . . . . 10
(b ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d)))) ≤ a⊥ |
| 52 | 51 | lecom 180 |
. . . . . . . . 9
(b ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d)))) C a⊥ |
| 53 | 52 | comcom7 460 |
. . . . . . . 8
(b ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d)))) C a |
| 54 | 53 | comcom 453 |
. . . . . . 7
a C (b ∩ (e ∪
((b ∪ e) ∩ ((a
∪ c) ∪ d)))) |
| 55 | 50, 54 | fh3 471 |
. . . . . 6
(a ∪ ((b ∩ (d ∪
((b ∪ d) ∩ ((a
∪ c) ∪ e)))) ∩ (b
∩ (e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d))))))
= ((a ∪ (b ∩ (d ∪
((b ∪ d) ∩ ((a
∪ c) ∪ e))))) ∩ (a
∪ (b ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d)))))) |
| 56 | 55 | cm 61 |
. . . . 5
((a ∪ (b ∩ (d ∪
((b ∪ d) ∩ ((a
∪ c) ∪ e))))) ∩ (a
∪ (b ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d)))))) = (a ∪ ((b
∩ (d ∪ ((b ∪ d) ∩
((a ∪ c) ∪ e))))
∩ (b ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d)))))) |
| 57 | | anandi 114 |
. . . . . . 7
(b ∩ ((d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d))))) = ((b ∩ (d ∪
((b ∪ d) ∩ ((a
∪ c) ∪ e)))) ∩ (b
∩ (e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d))))) |
| 58 | 57 | cm 61 |
. . . . . 6
((b ∩ (d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e)))) ∩ (b ∩ (e ∪
((b ∪ e) ∩ ((a
∪ c) ∪ d))))) = (b
∩ ((d ∪ ((b ∪ d) ∩
((a ∪ c) ∪ e)))
∩ (e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d))))) |
| 59 | 58 | lor 70 |
. . . . 5
(a ∪ ((b ∩ (d ∪
((b ∪ d) ∩ ((a
∪ c) ∪ e)))) ∩ (b
∩ (e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d))))))
= (a ∪ (b ∩ ((d
∪ ((b ∪ d) ∩ ((a
∪ c) ∪ e))) ∩ (e
∪ ((b ∪ e) ∩ ((a
∪ c) ∪ d)))))) |
| 60 | 56, 59 | tr 62 |
. . . 4
((a ∪ (b ∩ (d ∪
((b ∪ d) ∩ ((a
∪ c) ∪ e))))) ∩ (a
∪ (b ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d)))))) = (a ∪ (b ∩
((d ∪ ((b ∪ d) ∩
((a ∪ c) ∪ e)))
∩ (e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d)))))) |
| 61 | 46, 60 | lbtr 139 |
. . 3
((a ∪ b) ∩ ((c
∪ d) ∪ e)) ≤ (a
∪ (b ∩ ((d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d)))))) |
| 62 | 17, 61 | ler2an 173 |
. 2
((a ∪ b) ∩ ((c
∪ d) ∪ e)) ≤ ((a
∪ (b ∩ (c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e))))) ∩ (a ∪ (b ∩
((d ∪ ((b ∪ d) ∩
((a ∪ c) ∪ e)))
∩ (e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d))))))) |
| 63 | 2 | lel 151 |
. . . . . . . 8
(b ∩ (c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e)))) ≤ a⊥ |
| 64 | 63 | lecom 180 |
. . . . . . 7
(b ∩ (c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e)))) C a⊥ |
| 65 | 64 | comcom7 460 |
. . . . . 6
(b ∩ (c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e)))) C a |
| 66 | 65 | comcom 453 |
. . . . 5
a C (b ∩ (c ∪
((b ∪ c) ∩ ((a
∪ d) ∪ e)))) |
| 67 | 2 | lel 151 |
. . . . . . . 8
(b ∩ ((d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d))))) ≤ a⊥ |
| 68 | 67 | lecom 180 |
. . . . . . 7
(b ∩ ((d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d))))) C a⊥ |
| 69 | 68 | comcom7 460 |
. . . . . 6
(b ∩ ((d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d))))) C a |
| 70 | 69 | comcom 453 |
. . . . 5
a C (b ∩ ((d
∪ ((b ∪ d) ∩ ((a
∪ c) ∪ e))) ∩ (e
∪ ((b ∪ e) ∩ ((a
∪ c) ∪ d))))) |
| 71 | 66, 70 | fh3 471 |
. . . 4
(a ∪ ((b ∩ (c ∪
((b ∪ c) ∩ ((a
∪ d) ∪ e)))) ∩ (b
∩ ((d ∪ ((b ∪ d) ∩
((a ∪ c) ∪ e)))
∩ (e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d))))))) = ((a
∪ (b ∩ (c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e))))) ∩ (a ∪ (b ∩
((d ∪ ((b ∪ d) ∩
((a ∪ c) ∪ e)))
∩ (e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d))))))) |
| 72 | 71 | ax-r1 35 |
. . 3
((a ∪ (b ∩ (c ∪
((b ∪ c) ∩ ((a
∪ d) ∪ e))))) ∩ (a
∪ (b ∩ ((d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d))))))) = (a ∪ ((b
∩ (c ∪ ((b ∪ c) ∩
((a ∪ d) ∪ e))))
∩ (b ∩ ((d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d))))))) |
| 73 | | anass 76 |
. . . . . 6
((b ∩ (c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e)))) ∩ ((d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d))))) = (b ∩ ((c
∪ ((b ∪ c) ∩ ((a
∪ d) ∪ e))) ∩ ((d
∪ ((b ∪ d) ∩ ((a
∪ c) ∪ e))) ∩ (e
∪ ((b ∪ e) ∩ ((a
∪ c) ∪ d)))))) |
| 74 | 73 | cm 61 |
. . . . 5
(b ∩ ((c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e))) ∩ ((d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d)))))) = ((b ∩ (c ∪
((b ∪ c) ∩ ((a
∪ d) ∪ e)))) ∩ ((d
∪ ((b ∪ d) ∩ ((a
∪ c) ∪ e))) ∩ (e
∪ ((b ∪ e) ∩ ((a
∪ c) ∪ d))))) |
| 75 | | anandi 114 |
. . . . . 6
(b ∩ ((c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e))) ∩ ((d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d)))))) = ((b ∩ (c ∪
((b ∪ c) ∩ ((a
∪ d) ∪ e)))) ∩ (b
∩ ((d ∪ ((b ∪ d) ∩
((a ∪ c) ∪ e)))
∩ (e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d)))))) |
| 76 | 75 | ax-r1 35 |
. . . . 5
((b ∩ (c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e)))) ∩ (b ∩ ((d
∪ ((b ∪ d) ∩ ((a
∪ c) ∪ e))) ∩ (e
∪ ((b ∪ e) ∩ ((a
∪ c) ∪ d)))))) = (b
∩ ((c ∪ ((b ∪ c) ∩
((a ∪ d) ∪ e)))
∩ ((d ∪ ((b ∪ d) ∩
((a ∪ c) ∪ e)))
∩ (e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d)))))) |
| 77 | | anass 76 |
. . . . 5
(((b ∩ (c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e)))) ∩ (d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e)))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d)))) = ((b ∩ (c ∪
((b ∪ c) ∩ ((a
∪ d) ∪ e)))) ∩ ((d
∪ ((b ∪ d) ∩ ((a
∪ c) ∪ e))) ∩ (e
∪ ((b ∪ e) ∩ ((a
∪ c) ∪ d))))) |
| 78 | 74, 76, 77 | 3tr1 63 |
. . . 4
((b ∩ (c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e)))) ∩ (b ∩ ((d
∪ ((b ∪ d) ∩ ((a
∪ c) ∪ e))) ∩ (e
∪ ((b ∪ e) ∩ ((a
∪ c) ∪ d)))))) = (((b
∩ (c ∪ ((b ∪ c) ∩
((a ∪ d) ∪ e))))
∩ (d ∪ ((b ∪ d) ∩
((a ∪ c) ∪ e))))
∩ (e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d)))) |
| 79 | 78 | lor 70 |
. . 3
(a ∪ ((b ∩ (c ∪
((b ∪ c) ∩ ((a
∪ d) ∪ e)))) ∩ (b
∩ ((d ∪ ((b ∪ d) ∩
((a ∪ c) ∪ e)))
∩ (e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d))))))) = (a
∪ (((b ∩ (c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e)))) ∩ (d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e)))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d))))) |
| 80 | 72, 79 | tr 62 |
. 2
((a ∪ (b ∩ (c ∪
((b ∪ c) ∩ ((a
∪ d) ∪ e))))) ∩ (a
∪ (b ∩ ((d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d))))))) = (a ∪ (((b
∩ (c ∪ ((b ∪ c) ∩
((a ∪ d) ∪ e))))
∩ (d ∪ ((b ∪ d) ∩
((a ∪ c) ∪ e))))
∩ (e ∪ ((b ∪ e) ∩
((a ∪ c) ∪ d))))) |
| 81 | 62, 80 | lbtr 139 |
1
((a ∪ b) ∩ ((c
∪ d) ∪ e)) ≤ (a
∪ (((b ∩ (c ∪ ((b
∪ c) ∩ ((a ∪ d) ∪
e)))) ∩ (d ∪ ((b
∪ d) ∩ ((a ∪ c) ∪
e)))) ∩ (e ∪ ((b
∪ e) ∩ ((a ∪ c) ∪
d))))) |