| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa64v | GIF version | ||
| Description: Derivation of 4-variable OA from 6-variable OA. (Contributed by NM, 29-Nov-1998.) |
| Ref | Expression |
|---|---|
| oa64v.1 | a ≤ b⊥ |
| oa64v.2 | c ≤ d⊥ |
| Ref | Expression |
|---|---|
| oa64v | ((a ∪ b) ∩ (c ∪ d)) ≤ (b ∪ (a ∩ (c ∪ ((a ∪ c) ∩ (b ∪ d))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oa64v.1 | . . 3 a ≤ b⊥ | |
| 2 | oa64v.2 | . . 3 c ≤ d⊥ | |
| 3 | le0 147 | . . 3 0 ≤ 1⊥ | |
| 4 | 1, 2, 3 | ax-oa6 1030 | . 2 (((a ∪ b) ∩ (c ∪ d)) ∩ (0 ∪ 1)) ≤ (b ∪ (a ∩ (c ∪ (((a ∪ c) ∩ (b ∪ d)) ∩ (((a ∪ 0) ∩ (b ∪ 1)) ∪ ((c ∪ 0) ∩ (d ∪ 1))))))) |
| 5 | id 59 | . 2 0 = 0 | |
| 6 | id 59 | . 2 1 = 1 | |
| 7 | 4, 5, 6 | oa6v4v 933 | 1 ((a ∪ b) ∩ (c ∪ d)) ≤ (b ∪ (a ∩ (c ∪ ((a ∪ c) ∩ (b ∪ d))))) |
| Colors of variables: term |
| Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 0wf 9 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-oa6 1030 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: oa63v 1032 |
| Copyright terms: Public domain | W3C validator |