QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  bina4 GIF version

Theorem bina4 285
Description: Pavicic binary logic ax-a4 analog. (Contributed by NM, 5-Nov-1997.)
Assertion
Ref Expression
bina4 (b3 (ab)) = 1

Proof of Theorem bina4
StepHypRef Expression
1 leo 158 . . 3 b ≤ (ba)
2 ax-a2 31 . . 3 (ba) = (ab)
31, 2lbtr 139 . 2 b ≤ (ab)
43lei3 246 1 (b3 (ab)) = 1
Colors of variables: term
Syntax hints:   = wb 1  wo 6  1wt 8  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i3 46  df-le1 130  df-le2 131
This theorem is referenced by:  i3ror  532  i3th2  544
  Copyright terms: Public domain W3C validator