Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > bina4 | GIF version |
Description: Pavicic binary logic ax-a4 analog. (Contributed by NM, 5-Nov-1997.) |
Ref | Expression |
---|---|
bina4 | (b →3 (a ∪ b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leo 158 | . . 3 b ≤ (b ∪ a) | |
2 | ax-a2 31 | . . 3 (b ∪ a) = (a ∪ b) | |
3 | 1, 2 | lbtr 139 | . 2 b ≤ (a ∪ b) |
4 | 3 | lei3 246 | 1 (b →3 (a ∪ b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 1wt 8 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 |
This theorem is referenced by: i3ror 532 i3th2 544 |
Copyright terms: Public domain | W3C validator |