Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > df-i3 | GIF version |
Description: Define Kalmbach conditional. (Contributed by NM, 2-Nov-1997.) |
Ref | Expression |
---|---|
df-i3 | (a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wva | . . 3 term a | |
2 | wvb | . . 3 term b | |
3 | 1, 2 | wi3 14 | . 2 term (a →3 b) |
4 | 1 | wn 4 | . . . . 5 term a⊥ |
5 | 4, 2 | wa 7 | . . . 4 term (a⊥ ∩ b) |
6 | 2 | wn 4 | . . . . 5 term b⊥ |
7 | 4, 6 | wa 7 | . . . 4 term (a⊥ ∩ b⊥ ) |
8 | 5, 7 | wo 6 | . . 3 term ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
9 | 4, 2 | wo 6 | . . . 4 term (a⊥ ∪ b) |
10 | 1, 9 | wa 7 | . . 3 term (a ∩ (a⊥ ∪ b)) |
11 | 8, 10 | wo 6 | . 2 term (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
12 | 3, 11 | wb 1 | 1 wff (a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
Colors of variables: term |
This definition is referenced by: ska15 244 lei3 246 mccune3 248 i3n1 249 ni31 250 i3id 251 li3 252 ri3 253 i3i4 270 nom13 310 i5lei3 349 i3bi 496 df2i3 498 dfi3b 499 i3lem4 507 comi31 508 com2i3 509 lem4 511 i3abs1 522 i3abs3 524 i3th5 547 i3orlem1 552 i3orlem4 555 ud3lem1a 566 ud3lem1c 568 ud3lem1d 569 ud3lem1 570 ud3lem2 571 ud3lem3d 575 ud3lem3 576 u3lemaa 602 u3lemana 607 u3lemab 612 u3lemanb 617 u3lemoa 622 u3lemona 627 u3lemob 632 u3lemonb 637 u3lemc4 703 u3lem3 751 u3lem7 774 u3lem10 785 u3lem11 786 u3lem13a 789 u3lem13b 790 u3lem14a 791 negantlem9 859 neg3antlem2 865 lem3.3.7i3e1 1066 lem4.6.6i0j3 1090 lem4.6.6i1j3 1094 lem4.6.6i3j0 1098 lem4.6.6i3j1 1099 |
Copyright terms: Public domain | W3C validator |