QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  bina5 GIF version

Theorem bina5 286
Description: Pavicic binary logic ax-a5 analog. (Contributed by NM, 5-Nov-1997.)
Assertion
Ref Expression
bina5 (b3 (aa )) = 1

Proof of Theorem bina5
StepHypRef Expression
1 le1 146 . . 3 b ≤ 1
2 df-t 41 . . 3 1 = (aa )
31, 2lbtr 139 . 2 b ≤ (aa )
43lei3 246 1 (b3 (aa )) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  1wt 8  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i3 46  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator