Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > df-b1 | GIF version |
Description: Define biconditional for →1 . (Contributed by Roy F. Longton, 27-Jun-2005.) |
Ref | Expression |
---|---|
df-b1 | (a ↔1 b) = ((a →1 b) ∩ (b →1 a)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wva | . . 3 term a | |
2 | wvb | . . 3 term b | |
3 | 1, 2 | wb1 24 | . 2 term (a ↔1 b) |
4 | 1, 2 | wi1 12 | . . 3 term (a →1 b) |
5 | 2, 1 | wi1 12 | . . 3 term (b →1 a) |
6 | 4, 5 | wa 7 | . 2 term ((a →1 b) ∩ (b →1 a)) |
7 | 3, 6 | wb 1 | 1 wff (a ↔1 b) = ((a →1 b) ∩ (b →1 a)) |
Colors of variables: term |
This definition is referenced by: lem3.3.3 1052 lem3.3.5 1055 |
Copyright terms: Public domain | W3C validator |