Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > lem3.3.3 | GIF version |
Description: Equation 3.3 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 27-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
Ref | Expression |
---|---|
lem3.3.3 | ((a ≡5 b) →0 (a ↔1 b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i0 43 | . 2 ((a ≡5 b) →0 (a ↔1 b)) = ((a ≡5 b)⊥ ∪ (a ↔1 b)) | |
2 | df-b1 1048 | . . 3 (a ↔1 b) = ((a →1 b) ∩ (b →1 a)) | |
3 | 2 | lor 70 | . 2 ((a ≡5 b)⊥ ∪ (a ↔1 b)) = ((a ≡5 b)⊥ ∪ ((a →1 b) ∩ (b →1 a))) |
4 | lem3.3.3lem3 1051 | . . 3 (a ≡5 b) ≤ ((a →1 b) ∩ (b →1 a)) | |
5 | 4 | sklem 230 | . 2 ((a ≡5 b)⊥ ∪ ((a →1 b) ∩ (b →1 a))) = 1 |
6 | 1, 3, 5 | 3tr 65 | 1 ((a ≡5 b) →0 (a ↔1 b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →0 wi0 11 →1 wi1 12 ≡5 wid5 22 ↔1 wb1 24 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i0 43 df-i1 44 df-le1 130 df-le2 131 df-id5 1047 df-b1 1048 |
This theorem is referenced by: lem3.3.5 1055 |
Copyright terms: Public domain | W3C validator |