Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > lem3.3.5 | GIF version |
Description: Equation 3.5 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
Ref | Expression |
---|---|
lem3.3.5.1 | (a ≡5 b) = 1 |
Ref | Expression |
---|---|
lem3.3.5 | (a →1 (b ∪ c)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-b1 1048 | . . . . . 6 (a ↔1 b) = ((a →1 b) ∩ (b →1 a)) | |
2 | lea 160 | . . . . . 6 ((a →1 b) ∩ (b →1 a)) ≤ (a →1 b) | |
3 | 1, 2 | bltr 138 | . . . . 5 (a ↔1 b) ≤ (a →1 b) |
4 | df-i1 44 | . . . . 5 (a →1 b) = (a⊥ ∪ (a ∩ b)) | |
5 | 3, 4 | lbtr 139 | . . . 4 (a ↔1 b) ≤ (a⊥ ∪ (a ∩ b)) |
6 | leo 158 | . . . . . 6 b ≤ (b ∪ c) | |
7 | 6 | lelan 167 | . . . . 5 (a ∩ b) ≤ (a ∩ (b ∪ c)) |
8 | 7 | lelor 166 | . . . 4 (a⊥ ∪ (a ∩ b)) ≤ (a⊥ ∪ (a ∩ (b ∪ c))) |
9 | 5, 8 | letr 137 | . . 3 (a ↔1 b) ≤ (a⊥ ∪ (a ∩ (b ∪ c))) |
10 | lem3.3.5.1 | . . . . 5 (a ≡5 b) = 1 | |
11 | lem3.3.3 1052 | . . . . 5 ((a ≡5 b) →0 (a ↔1 b)) = 1 | |
12 | 10, 11 | lem3.3.2 1046 | . . . 4 (a ↔1 b) = 1 |
13 | 12 | ax-r1 35 | . . 3 1 = (a ↔1 b) |
14 | df-i1 44 | . . 3 (a →1 (b ∪ c)) = (a⊥ ∪ (a ∩ (b ∪ c))) | |
15 | 9, 13, 14 | le3tr1 140 | . 2 1 ≤ (a →1 (b ∪ c)) |
16 | 15 | lem3.3.5lem 1054 | 1 (a →1 (b ∪ c)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →1 wi1 12 ≡5 wid5 22 ↔1 wb1 24 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i0 43 df-i1 44 df-le1 130 df-le2 131 df-id5 1047 df-b1 1048 |
This theorem is referenced by: lem3.4.5 1078 |
Copyright terms: Public domain | W3C validator |